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The RedMDStream program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License version 2, as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

Copyright (C) 2007 - 2014: University of Warsaw
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1 Introduction

RedMDStream is a free open source package for developing coarse–grained (CG) models of biomolecules
(nucleic acids, proteins and their complexes) by automatizing and streamlining the most time
consuming steps of the procedure. Since creating a CG model is often a very time consuming
task, we have developed this software to help researchers efficiently explore a plethora of ways of
designing such models (representation, bonding patterns, potential energy function). The focus of
this tool is on point–bead models, not bound to a lattice, with a small number of beads
(1–4) representing a residue.

RedMDStream provides routines to perform the following tasks (see also Fig. 1):

• Mapping a full–atomistic structure to a coarse-grained representation based on the user
provided topology.

• Setting a network of bonded interactions (pseudo–bond, pseudo–angle, pseudo–dihedral)
between beads based on their position in the sequence, spatial coordinates, structural infor-
mation (2D/3D) and other properties.

• Defining a potential energy function for the bonded interactions defined above and the
nonbonded interactions between all the other beads.

• Running molecular dynamics using a built–in RedMD simulation engine.

• Analyzing root mean square deviation, root mean square fluctuations and distance distribu-
tions for the resulting trajectories.

• Optimizing parameters of the coarse-grained model using metaheuristic or local search al-
gorithms.

RedMDStream is an extension to the RedMD coarse–grained molecular dynamics software
developed in the group of Joanna Trylska group in the years 2007–2014. The RedMD simula-
tion engine is fully integrated into the RedMDStream software. Please note however that some
additional tools bundled in the RedMD package (e.g., structure preparation, analysis) are not
included in the RedMDStream package to avoid redundancy. If needed please install them from
the RedMD package available at the laboratory webpage.

RedMDStream is intended to be extensible. The source code is structured, therefore adding
new methods and routines should be straightforward. The RedMDStream source code is written
in C++ language, with some parts of the RedMD molecular dynamics engine written also in
C language. RedMDStream is parallelized with OpenMP and MPI frameworks (see Sec. 1.4
for details). The code was tested on various Linux platforms. The RedMDStream package is
distributed under the terms of the GNU Public License. A copy of the GPL is provided with the
RedMDStream distribution and is also available at http://www.gpl.org.

http://www.gpl.org
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Figure 1: Description of the RedMDStream operational workflow.
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1.1 System Requirements

RedMDStream is a C++ Linux/UNIX application, installation on the Windows system should
be possible using Cygwin. RedMDStream is available for download as a source code, to allow
compilation for a particular system. It therefore requires:

• C/C++ compilers 1,

• certain basic library functions, which are usually supplied by the Linux/UNIX system, how-
ever the lack of getline function on older Mac OS X systems might unable compilation,

• libxml2 library with headers for compilation (libxml2-devel or libxml2-dev package has
to be installed on certain Linux distributions).

1.2 Installation

The source code of the RedMDStream package can be found at:

http://bionano.cent.uw.edu.pl/software

After downloading the package one should unpack the archive:

tar xzf RedMDStream-src.tar.gz

Enter into the RedMDStream sources directory:

cd RedMDStream

Execute a configuration script and compile the program:

./configure

make

make install

By default RedMDStream will be compiled with enabled OpenMP parallelization (if available).
To compile without OpenMP, one should use the following commands:

./configure -disable-openmp

make

make install

One can also compile RedMDStream with the MPI parallelization support (turned off by de-
fault):

1RedMDStream was successfully tested with GNU gcc and g++ (v. 4.4.7 and 4.8.1), Intel C/C++ (v 14.0.1),
Portland Group (v. 13.7) and IBM xlc (v. 11.1).
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./configure --enable-mpi

make

make install

MPI and OpenMP parallelizations are mutually exclusive and both cannot be turned on at the
same time.

The compiled executable will be stored in the /usr/local/bin folder (requires super-user priv-
ileges). To use a different location add -prefix= option with a directory name to the configure

script (e.g., ./configure -prefix=/opt/RedMD). To run RedMDStream simply write:

RedMDStream <input file name>

If necessary add a directory prefix, depending on the usage of the prefix option in the configure

script, e.g.:

/opt/RedMD/bin/RedMDStream <input file name>

If make was run without make install then the RedMDStream executable can be found in src

subdirectory of the RedMDStream folder.

To run the MPI version in parallel one should use mpirun (or a similar command depending
on the MPI flavor), e.g. in MPICH2:

mpirun -np <total number of nodes/cores> RedMDStream <input file name>

1.3 Usage

If you want to design a new coarse-grained model for proteins or nucleic acids, RedMDStream will
help you to find out how numerical parameters of the model, e.g. equilibrium distances or force
constants, affect simulation of some test biomolecules, as well as find the best parameters. In this
case you run RedMDStream with a optimization XML file (see Sec. 2.4.1):

RedMDStream <optimization XML file name>

To get practical insight into how RedMDStream optimization works, RedMDStream contains
examples described in Sec 3.3.

When the model is done, you can use RedMDStream to simulate other molecules with the
same force field. In that case you run protocol XML file (see Sec. 2.3):

RedMDStream <protocol XML file name>

There are as well examples in Sec. 3.2 that show sample protocol XML files.
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1.4 Parallelization

Parallelization in the RedMDStream software is performed on two levels. In the first one multiple
cores are assigned the same molecular dynamics simulation, to be simultaneously calculated by
all cores. This level can be used in all the RedMDStream tasks that involve an MD simulation.
However, since it requires frequent communication and synchronization between cores (every MD
simulation step), its efficiency is limited to multi–core machines.

On the other hand the coarse-grained model optimization tasks (see 2.4) in RedMDStream of-
ten require performing multiple MD simulations in a single iteration of the optimization algorithm.
Therefore, in these cases RedMDStream may assign each core a different MD protocol to process
in a serial way. So the communication between cores is performed only after a CG MD protocol
is executed, which results in a much lower frequency of communication in comparison to every
single simulation step. CG MD protocol based optimization is the second level of parallelization,
available in RedMDStream for all optimization modes, excluding simplex. It is more efficient,
especially if larger number of cores is available or if multi–node clusters are involved.

The first work sharing level (one MD simulation on multiple cores) is available solely using
OpenMP. The second level (multiple MD simulations on multiple cores) is also implemented
using OpenMP and MPI for the evolutionary algorithm and particle swarm optimization, which
are the best ones for parallelization.

1.5 Units

RedMDStream uses the following system of units:

Length Å = 10−10 m

Mass u = 1.6605402(10) · 10−27 kg

Time ps = 10−12 sec

Charge e = 1.602 · 10−19 C

Temperature K

Angle rad or deg ◦, see below

Energy kcal/mol

Velocity Å/ps

Momentum Å/(ps u)

Force kcal/(mol Å)

The reported angle and dihedral values are in degrees. However, for the calculations
of energies and forces they are converted into radians. Therefore, if one provides
parameters for a harmonic potential describing an angle, the equilibrium angle should
be provided in degrees, but the force constant should be reported in kcal

mol rad2 .

1.6 Citing

If you find RedMDStream useful, please cite the following paper:
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Filip Leonarski, Joanna Trylska; RedMDStream: streamlining development of residue scale coarse-
grained models for proteins and nucleic acids (2014) In preparation

1.7 Contact

RedMDStream is a new application and its functionality is still being expanded. Therefore, we
encourage every user to send us comments, questions and suggestions. Contact data for the au-
thors are the following:

Filip Leonarski, MSc
fleon@cent.uw.edu.pl or

Joanna Trylska, PhD
joanna@cent.uw.edu.pl

Centre of New Technologies,
University of Warsaw
Banacha 2c
02-089 Warsaw, Poland
phone: +48 22 5543 683

2 Functionality

RedMDStream is a tool aimed to help designing CG potentials for proteins and nucleic acids. We
have introduced certain file formats to describe the tasks. In this section we describe these file
formats in detail. First, in Sec. 2.1 we introduce file formats to be used with RedMDStream and
general rules regarding these files. In Sec. 2.1.1 we describe the framework in which these files are
written, i.e., Extensible Markup Language (XML) version 1.0 [5]. XML is s well established format
to organize data in a hierarchical way and exchange these data between various computer systems
and applications. In Sec. 2.1.3 we introduce rules to build and use mathematical expressions in
RedMDStream. Finally, we introduce three XML file formats used by RedMDStream:

• Topology XML file (Sec. 2.2)2 defines a CG model, i.e., tells RedMDStream what type
of reduced representation should be used, gives rules how to connect beads and potential
energy terms. Based on this file RedMDStream will transform a full–atomistic structure
into a CG one for further CG model optimization and simulations.

• Protocol XML file (Sec. 2.3) defines all the steps to prepare, execute and analyze CG MD
simulation(s).

2Topology definition file should not be confused with the topology and structure (SXML) file in RedMD. The
first one provides an abstract definition of a force field and the latter one contains a structure of a particular
biomolecule, with information about bead positions and bonds.
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• Optimization XML file (Sec 2.4) tells RedMDStream how to optimize a CG model: which
parameters should be tuned, what are the measures to assess the quality of the CG model
and how to search for the best solution.

Examples of these files are bundled with RedMDStream and are discussed in Sec. 3. These
examples are designed to work as building blocks, and the uses may modify them to create own
input files for RedMDStream.

2.1 Operation Modes and Input Files

RedMDStream can be executed in two different modes:

• Simulation mode In this mode a single simulation, with a defined coarse–grained model,
is prepared, executed and analyzed. To use this mode provide a simulation protocol file as
a RedMDStream input (see Section 2.3).

• Optimization mode In this mode multiple simulations are executed in a batch mode to
find the optimal parameter set for a CG MD model of choice. To use this mode provide an
optimization protocol file as a RedMDStream input (see Section 2.4).

2.1.1 XML Format Parsing

RedMDStream protocol and topology files are defined according to the XML 1.0 standard [5]. In
an XML file data are organized into tags (each tag opens with the < sign and closes with the >
sign). A tag can incorporate other tags or text in a manner shown below:

<TAG >

<INNER_TAG >

text

</INNER_TAG >

</TAG >

always including an opening and closing of a tag. Missing a closing tag or trying to interlace tags
(closing a tag before first closing all the enclosed tags) will result in a syntax error and stop the
program execution. If a tag does not include any content it can be written in a shorter version:

<TAG />

which is equivalent to

<TAG ></TAG >

This way closing of a tag is unnecessary. Tags may also include properties:

<TAG property1 =" value1" property2 =" value2" />

One tag may include only one property with a certain name, but can enclose multiple tags with the
same name. Including some properties is obligatory, for example if one writes a tag to open a file,
this would be a nonsense operation without providing a file name. If a tag without an obligatory
property is found program execution will stop. Other properties are optional. If they are omitted,
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no error message will appear, but a default value will be assigned to the property. RedMDStream
will give an error, if a tag is found that should not be enclosed in other tags, however if one
includes a property that is not valid it is in general ignored. Care has to be taken to typographic
errors in optional property names, since in such case a default value will be assigned and no error
or warning message will be printed.

Everything inside the comment tags is being ignored:

<!-- ignored text -->

XML comments cannot be nested (one XML comment cannot be placed inside another one). It
is allowed to place -- inside XML comments only in a comment end.

2.1.2 Chemical File Formats

RedMDStream reads biomolecular data saved in the Protein Data Bank (PDB) [3] and Pro-
tein Data Bank Markup Language (PDBML)[23] formats. In the case of the PDB format, ver.
3.303 is used and the following entries are recognized: ATOM, HETATM, HELIX, SHEET, SS-
BOND and LINK. In the case of the PDBML format, we use the PDBx/mmCIF dictionary
ver. 4.045[4]4 for tag description. The following PBDML tags are recognized: atom site,
ndb struct na base pair, struct conf, struct conn and struct sheet range. RedMDStream
also reads the APBS PQR files [2]5 that include also information about the charges and radii of
atoms. Please note that PDB is a fixed format file (it does matter in which column data are
placed) and PQR is a free format file (only the order of data matters). RedMDStream saves and
analyzes molecular dynamics trajectories in the popular CHARMM DCD format. [6]

2.1.3 Equation Parsing

RedMDStream has a built–in equation parser. One may use standard operations in the equation
editor (+− ∗ / ˆ ) and mathematical functions (log log10 exp sin cos tan sinh cosh tanh).

One may also use the comparison operators6 :

• eq or = Equals

• neq or != Not equals

• lt Less than

• gt Greater than

• lte Less than or equals

• gte Greater than or equals

3http://www.wwpdb.org/documentation/format33/v3.3.html
4http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Index/
5http://www.poissonboltzmann.org/file-formats/biomolecular-structurw/pqr
6Since in XML standard lower/greater signs and & have special meaning such operations have to be described

using literal acronyms.

http://www.wwpdb.org/documentation/format33/v3.3.html
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Index/
http://www.poissonboltzmann.org/file-formats/biomolecular-structurw/pqr
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Logical expressions and mathematical expressions can be mixed using ? and : operators:

expr1 ? expr2 : expr3

expr1 can be a logical expression or mathematical expression. If it is true (logical) or not zero
(math), expr2 is evaluated, otherwise expr3 is evaluated. Logical expressions can be also com-
bined with each other using and, or (or |) and not (or !) operators.

The numbers are always parsed as real numbers (floating point), there is no integer mathemat-
ics available. Since internally RedMDStream uses the radian angle measures, to facilitate using
the degree units, one may use the deg function, which changes the degree measure to radians. For
example deg(90.0) will equal to 90◦ or π

2
in radians. π is available using pi literal, so one can

also write pi/2 instead of deg(90.0). One can also access the Boltzmann constant in kcal
mol K

units
by using kB (or KB and kb) literal in the equation mode.

2.1.4 Variables

Equations in RedMDStream can include not only numbers and operators, but also variables. The
meaning of variables resembles functional, not imperative programming. If one defines a variable,
its definition is stored internally. Only when the actual numerical value is required, it will be
calculated according to the given definition. For example, one can define that a parameter for
a certain potential connecting two atoms is equal their average mass divided by 5 times their
distance in the reference structure. In RedMDStream the definition of this parameter p will be
stored as:

<VAR name="p"> (atom1.mass + atom2.mass) / (5 * bond.dist) </VAR >

This tag tells RedMDStream how to calculate the value of p. Numerical p value is necessary if a
structure is prepared for a molecular dynamics simulation. So when a particular bond is created,
for designated beads, the value of p will be calculated for the bond and atoms and stored in the
file. The p value will be independently calculated for each bond.

Variables in RedMDStream can be global or context–bound. Global variables can be used
everywhere after they are declared. Context–bound variables are connected with a particular
object: an atom (real or CG pseudo-atom), residue, bond or potential. Additional variables can
be defined in atom type (see sec. 2.2.2) for CG beads or in potential definition (see sec. 2.2.4).
Please refer to Tabs. 1 for details.

Variable names are case sensitive. Operator and function names can be typed in both all lower
or all upper case. Operator literals, function names, as well as kB and pi are reserved names and
should not be used to call variables. Variable names have to start with a letter (upper or lower
case) and should be composed of letters, numbers and underscore .

2.1.5 Interactions

A coarse–grained model should include a global interaction pattern in the molecule. Trying to
deduce these patterns from the full–atomistic 3D structure might be a tedious task. Therefore,
RedMDStream allows supplementing the structure with some higher–level information. For ex-
ample, one may use the information about complementary pairing in nucleic acids to build an
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Context Variable Description Source

atom
mass Atom massa

PDB [3], PDBML [23],

(atom1, PQR [2]

atom2, charge Charge PDB, PQR

...) radius Atom radius PQR

resSeq Residue number in sequence PDB, PDBML, PQR

serialNum Atom serial number PDB, PDBML, PQR

isHelix
0 = not in a helical conformation

PDB, PDBML
1 = in a helical conformation

helixLength length of helix PDB, PDBML

helixClass helix class (see PDB spec.) PDB, PDBML

isStrand
0 = not in β-strand conformation

PDB, PDBML
1 = is in β-strand conformation

totalMass
sum of masses of all atoms in the residue

PDB, PDBML, PQR
(not counting CG beads)

totalCharge
sum of charges of all atoms in the residue

PDB, PQR
(not counting CG beads)

bond dist Bond distance in ref. structure PDB, PDBML, PQR

mu Reduced mass (for bond only) PDB, PDBML, PQR

angle Angle in ref. structure (in radians) PDB, PDBML, PQR

dist12 1-2 distance for angle in ref. structure PDB, PDBML, PQR

dist23 2-3 distance for angle in ref. structure PDB, PDBML, PQR

dih Dihedral in ref. structure (in radians) PDB, PDBML, PQR

dist12 1-2 distance for dih. in ref. structure PDB, PDBML, PQR

dist23 2-3 distance for dih. in ref. structure PDB, PDBML, PQR

dist34 3-4 distance for dih. in ref. structure PDB, PDBML, PQR

interaction intensity of interaction (0 = none)
see Tab. 2

name (see Tab. 2)

aCalculated based on the PDB atom type or element, only for atomistic structures

Table 1: Variables used in the atom and bond contexts, depending on the type of the uploaded
file. Please note that the 2D structure (a helix, strand) is based on the information encoded in the
PDB/PDBML file. RedMDStream does not provide secondary structure reading software. dih.
stands for dihedral and ref. for reference.
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Interaction name Description Source

WC Cis Watson-Crick hydrogen bonds in nucleic acidsa
PDBML [23],

RNAView [25],

Dot-bracket

WC AU A–U Watson-Crick hydrogen bonds in nucleic acids PDBML, RNAView

WC CG C–G Watson-Crick hydrogen bonds in nucleic acids PDBML, RNAView

NonWC Noncanonical hydrogen bonds in nucleic acids PDBML, RNAView

Disulph Disulphide bridges in proteins PDB, PDBML

Salt Salt bridges in proteins PDBML

Hydrogen Hydrogen bonds PDBML

Link Atom links PDB

aPair type I according to Leontis-Westhof[16] classification, it includes standard A–U and C–G, but also a
wooble pair G–U or U–U pair, when interacting with the Watson–Crick edges in cis conformation. To get only
standard A–U and C–G use WC AU and WC CG rules combined.

Table 2: Interaction names recogniezd by RedMDStream.

RNA model. This information might be inferred from a full–atomistic structure [25, 9]. It could
be also found using a 2D prediction method [17] or experimental methods, like SHAPE. [24]

RedMDStream allows storing two body interactions in a given molecule. For each pair of
interacting atoms a number in the range from 0.0 to 1.0 is stored, which describes the probability
or intensity of a particular interaction. These interaction data can be fetched from certain file
formats recognized by RedMDStream (see Tab. 2 for available names). At the moment only dot–
bracket notation allows probabilistic data. For example, one can include multiple predictions of a
2D nucleic acid structure in one file and then create bonds between nucleotides according to a sum
of probabilities of predictions that include this pair. Other standard formats use 1.0 if interaction
is present and 0.0 otherwise. The interaction data can be also loaded from a text file.

Interactions can be later accessed using a special bond rule (see Sec. 2.2.3) or using a variable
that exists in bond context called by interaction name (for example bond.WC, bond.Salt).
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2.2 Topology

A coarse–graining process in RedMDStream is performed in the following way:

• Atoms from high–resolution structure are mapped into a coarse–grained representation based
on ”atom rules”.

• Pseudo–bond7 network is created based on ”bond rules”.

• Potential energy function terms are associated with particular bonds.

All the tasks mentioned above are referred in the manual as a ”topology”.

2.2.1 Topology XML File

The rules how to perform these tasks are encoded in the topology definition XML file. The file has
to contain a single TOPOLOGY root tag and inside this tag one defines the variables (see Sec. 2.1.3),
atom–CG bead mapping rules, CG atom types, pseudo–bond creation rules, and potential energy
function definitions, see Fig. 2 for an example. The topology XML file can be also nested inside
a protocol XML file. In such case its contest is placed inside a TOPOLOGY tag. All the rules below
apply also to this situation.

2.2.2 Atom Mapping Rules

RedMDStream provides two ways to create a coarse–grain bead:

1. Use an existing atom
A coarse–grain bead is associated with a particular atom present in the full–atomistic rep-
resentation, for example, a phosphorus atom in nucleotides or α-carbon in amino acids. In
this case the definition is the following:

<ATOMTYPE name="CGP">

<VAR name="mass ">300</VARIABLE >

<VAR name=" charge ">-1.0</VARIABLE >

<ATOMRULE >

<FIND_ATOM atomName ="P" />

</ATOMRULE >

</ATOMTYPE >

This will create an atom of type CGP with mass of 300 u and charge -1.0 e, placed in the
position of an atom named P in the PDB/PDBML file.8

One can extend the ATOMRULE section to incorporate more conditions, for example the
following code:

7Pseudo–bonds in this chapter refer as well to angles and dihedrals between CG beads.
8RedMDStream ignores leading and trailing spaces while searching the names in PDB or PDBML file entries.

It will therefore not differentiate between ”P ”, ” P ” and ” P” atom names.
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<TOPOLOGY>

    <ATOMTYPE name="P">
        <VAR name="mass">residue.totalMass</VAR>
        <VAR name="charge">-1.0</VAR>
        <ATOMRULE>
            <FIND_ATOM atomName="P"/>
        </ATOMRULE>
    </ATOMTYPE>

    <BOND_RIGID name="bond">
        <VAR name="k">2.24</VAR>
        <VAR name="r0">5.92</VAR>
        <BONDRULE save="Pneigh">
          <NEIGHBOR/>
          <ATOM type="P"/>
        </BONDRULE>
    </BOND_RIGID>

    <BOND_ANGLE_CUST name="compl1" bond="k*0.5*(r-r0)^2"
                                                 angle="kTheta*0.5*(theta-deg(theta0))^2">
        <BONDRULE>
            <PRODUCT>
                <INTERACTION name="WCHBond" pos1="1" pos2="2"/>
                <POSITION pos2="0" pos3="1"/>
            </PRODUCT>
        </BONDRULE>
        <VAR name="r0">18.97</VAR>
        <VAR name="k">0.2</VAR>
        <VAR name="kTheta">0.2</VAR>
        <VAR name="theta0">75.0</VAR>
    </BOND_ANGLE_CUST>

    <NONBONDED>
        <BOND_ELEC name="repulsive">
            <VAR name="epsilon">76.0</VAR>
        </BOND_ELEC>
    </NONBONDED>

</TOPOLOGY>

Root node, has to start and end all topology 
XML input �les.

Pseudo-atoms that are placed on phosphorus 
(type is "P”) and are in neighboring residues 

will be connected by rigid bonds.

The model will use a single pseudo-atom, 
based on phosphorus position. Its mass will 
total to the total of all atoms and charge will 

equal -1.0 e.

Pseudo-atoms not connected by bonds, will 
interact using electrostatic interaction: 

U(r) = q1q2/(76.0*4πε0*r).

Triples of pseudo-atoms, where �rst and 
second are connected by Watson-Crick 
hydrogen bonds (”WCHBond” interaction), 
and second and third are neighboring beads 
on one strand, interact with a potential, that is 

a product of distance and angular terms.

Figure 2: Sample topology XML file
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<NEW_ATOM >
   ...
</NEW_ATOM >

<ATOMRULE >
   <FIND_ATOM ... />
</ATOMRULE >

a. b.

Figure 3: 3D structure of thymine nucleotide is presented in two different coarse–grained represen-
tations. Both representations model this nucleotide using 2 beads, one for backbone (green), one
for base (red). (a) In the first representation all heavy atoms were categorized as either backbone
(light green) or base (light red). Two beads were created, one in a position that is averaged of
all atoms in the respective category. To achieve such bead placement one should use NEW ATOM

tag. (b) In the second representation phosphorus position was chosen as reference for backbone
and N3 nitrogen position was chosen for base. All the other atoms are ignored. For such effect
ATOMRULE and FIND ATOM should be used.

<ATOMTYPE name="CAL">

...

<ATOMRULE >

<FIND_ATOM atomName ="CA" resName ="LYS" />

<EXPR >atom.isHelix </EXPR >

</ATOMRULE >

</ATOMTYPE >

finds all Cα atoms in lysine, which are part of a helix (based on the data in the PDB file).
For variables available for use inside the expression rules see Tab. 1 and for rules on how to
write equations in Sec. 2.1.3. The EXPR rule is satisfied if the enclosed expression is greater
than 0.09.

Besides the atom and residue name, one can also specify the chain ID or range of residue
IDs. This can be helpful in the design of multiscale or Go models. The following topology
XML file entry:

<ATOMTYPE name="CAL">

...

<ATOMRULE >

<FIND_ATOM atomName ="CA" resName ="LYS"

chainID ="A" minResID ="7" maxResID ="10" />

9Threshold of 0.000001 applies, values lower than threshold are considered zero.
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</ATOMRULE >

</ATOMTYPE >

will create the beads for Cα atoms of lysine but only for the residues in chain A from 7 to
10.

One may also combine the rules using the logical sum (a rule is satisfied, even if only one
subrule is satisfied) or product (a rule is satisfied, only if all subrules are satisfied) and
introduce negation:

<ATOMTYPE name="CAX">

<VAR name="mass ">300</VARIABLE >

<VAR name=" charge ">0.0</VARIABLE >

<ATOMRULE >

<!-- AND is a default for rules inside ATOMRULE -->

<AND >

<OR >

<FIND_ATOM atomName ="CA" resName ="LYS" />

<FIND_ATOM atomName ="CA" resName ="HIS" />

</OR>

<NOT >

<EXPR >atom.isHelix </EXPR >

</NOT >

</AND >

</ATOMRULE >

</ATOMTYPE >

2. Create a bead based on the average position of many atoms
In this case a bead is created in a new coordinate position, for example, in the center of
mass of a whole residue. This position is calculated for each residue, so at the moment it is
not possible to build a bead corresponding to the center of mass of multiple residues (e.g.,
DNA models with a bead in the middle of a complementary pair cannot be constructed with
RedMDStream at the moment). While creating a bead, properties of the atoms constituting
it can be aggregated. For example:

<ATOMTYPE name="CGP">

<NEW_ATOM atomName ="LYS" centreOfMass ="true">

<RESIDUE name="LYS" />

<VAR name="mass" aggr="sum" />

<VAR name=" tempFactor" aggr="avg" />

</NEW_ATOM >

</ATOMTYPE >

creates a bead of type LYS (residue name = LYS), in the center of mass of this residue residue
(centreOfMass="false" would create a bead in a geometrical center of a residue). This
bead has two variables: mass – a sum of atom masses in the residue and tempFactor – an
average of atom temperature factors as read from PDB or PDBXML.

A coarse-grain bead can be also composed only of selected atoms of the residue:
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<ATOMTYPE name="CGP">

<NEW_ATOM atomName ="PEP" centreOfMass ="true">

<RESIDUE name="PHE" />

<RESIDUE name="TYR" />

<ATOM name="C" />

<ATOM name="N" />

<ATOM name="O" />

<VAR name="mass" aggr="sum" />

<VAR name=" tempFactor" aggr="avg" />

</NEW_ATOM >

</ATOMTYPE >

The above creates a bead of type PEP for the center of mass of a peptide bond of a phenylalanine
or tyrosine (residue name = PHE or TYR). This bead has two variables: mass – a sum of atom
masses in the group and tempFactor – an average of atom temperature factors. One can specify
multiple RESIDUE tags, if the same type of bead should be created for different residue types. If
multiple RESIDUE tags are listed, one can put ATOM tags for atoms that occur in one and do not
occur in the other one. E.g. if one defined a side chain bead for the phenylalanine and tyrosine,
a ATOM tag could be placed for oxygen from OH group in tyrosine. It will add the oxygen in
tyrosine to the bead, but will not affect phenylalanine in any way (this ATOM tag will be ignored).
Also for a bead formed based on a DNA nucleobase, one should include atom names for atoms
present in guanine, cytosine, adenine and thymine (see examples of topologies for 2- and 3-bead
per nucleotide DNA models in Sec. 3.1).

2.2.3 Bond Creation Rules

After specifying the beads and their positioning, the next step in designing the topology is to
define the rules for placing the (pseudo-)bonds between the beads in the structure. These rules
will be used when defining potential energy terms. Each rule has to have a name. An example
rule:

<BONDRULE name=" Pneigh">

<NEIGHBOR />

<ATOM type="P" />

</BONDRULE >

includes neighboring P (phosphorus) beads (1–2 for pseudo–bond, 1–3 for pseudo–angle, 1–4 for
pseudo–dihedral). The following rule types are allowed inside the BONDRULE tag:

1. Bead type:

<BONDRULE name="R1">

<ATOM type="P" />

</BONDRULE >

<BONDRULE name="R2">

<ATOM type1 ="CA" type2="P" />

</BONDRULE >
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<NEIGHBOR />
Bonded interactions

<INTERACTION ... />
Watson-Crick 

complementary 
pairing

<DIST ... />
Elastic network

Figure 4: A fragment of the ribosomal RNA in one-bead per nucleotide elastic network model of
Trylska et al. [22]. In this model: (a) beads are connected by pseudo-bonds according to their order
in the sequence (red), (b) to their secondary structure connectivity (green) and (c) beads close to
each other in reference structure are connected by breakable bonds. To achieve this representation
in RedMDStream different bond rule XML tag should be used for each of the bonds: (a) NEIGHBOR,
(b) INTERACTION and (c) DIST. The order of using the rules is also important because the rules
(a) and (b) take precedence over the (c) distance rules.
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The rule termed R1 defines pseudo–bonds that connect beads of type P, defined with ATOMTYPE

tag described in the previous section. The rule tt R2 defines pseudo–bonds that connect the
CA type beads with the P type beads. If only type1="CA" is specified, then this rule would
describe the interactions of the CA type beads with any beads. One can also set type3 and
type4 for the angle and dihedral related rules.

If a single type is to be assigned to different atoms, more elaborate rules should be used:

<BONDRULE name="R3">

<ATOM atom1 ="true" atom2="true">

<FIND_ATOM resName ="LYS" />

<EXPR >atom.helixClass eq 3</EXPR >

</ATOM >

</BONDRULE >

Inside the ATOM tag one can put all the tags used in Sec. 2.2.2 to find atoms. Setting switches
atom1—atom4 as true designates which atoms in the pseudo–bond/angle/dihedral should
be checked according to this rule.

2. Bead distance:

<BONDRULE name="R4">

<DIST min ="0.0" max ="10.0" />

</BONDRULE >

The rule termed R4 allows pseudo–bonds in which the distance between the beads is in 0.0
— 10.0 Å range. The rule can be also applied in the context of an angle or dihedral potential
energy term. In such case all the distances between atoms (1–2, 2–3, 3–4) have to match the
minimum and maximum values. For only selected distances one should use a more general
expression rules, described firther. The default min value is 0.0 and default max value is
infinity.

3. Interaction type:

<BONDRULE name="R5">

<INTERACTION name="WC" />

</BONDRULE >

connects beads interacting by WC bonds (Watson–Crick pairing), see Section 2.1.5 and inter-
action names in Tab. 2. Please remember that certain interaction classes are defined only
with external files. Interactions in RedMDStream are only between two beads. For angles
and dihedrals, one can use pos1 and pos2 attributes for the INTERACTION tag to set which
beads in the angle or dihedral should be connected with a particular bead–bead interaction.
INTERACTION can also have a directional="true" attribute that distinguishes the direc-
tionality. If the interaction file defines the interaction between bead 7 and bead 14, the rule
will apply only to a pseudo–bond in which bead 7 is at the first position and bead 14 is at
the second position. If directional="false" is set or no option is used, both 7–14 and
14–7 bead combinations will succeed.

4. Position in the chain:
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<BONDRULE name="R6">

<POSITION pos1 ="0" pos2 ="1" pos3 ="1" />

</BONDRULE >

<BONDRULE name="R7">

<-- shortcut for

POSITION pos1 ="0" pos2 ="1"

pos3 ="2" pos4 ="3" -->

<NEIGHBOR />

</BONDRULE >

<BONDRULE name="R8">

<-- shortcut for

POSITION pos1 ="0" pos2 ="0"

pos3 ="0" pos4 ="0" -->

<RESIDUE />

</BONDRULE >

This rule describes the connectivity of beads in the same chain (i.e., with the same chain
ID) by taking into account their position in sequence controlled by the residue ID. The rule
R6 allows angles (or dihedrals) in which the second and third beads are from the residue
following the first one. The NEIGHBOR tag describes the interactions between sequential
beads and RESIDUE describes the interactions between the beads that belong to the same
residue.

5. Expression rules:

<!-- bonds where first atom belongs

to a right handed pi helix

(see PDB specification for helix classes) -->

<BONDRULE name="R9">

<EXPR > atom1.helixClass eq 3 </EXPR >

</BONDRULE >

<!-- angles where sum of 1-2 and 2-3 distances is

greater than 10.0 A -->

<BONDRULE name="R10">

<EXPR > (bond.dist12 + bond.dist23) gt 10.0 </EXPR >

</BONDRULE >

<!-- angles bigger than 30.0 degree ,

since bond.angle is set in radians

one should use deg (30.0) to convert

degrees to radians -->

<BONDRULE name="R11">

<EXPR > bond.angle gt deg (30.0) </EXPR >

</BONDRULE >

These rules allow more elaborate definitiona for creating bonds, see Sec. 2.1.3 for rules on
how to write expressions and Tabs. 1 and 2 for the variable/interaction names. This rule is
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only satisfied if the enclosed expression is greater than 0.010.

6. Shift other rules:

<BONDRULE name="R12">

<SHIFT shift1 ="1" shift2 ="1">

<INTERACTION name="WC" />

</SHIFT >

</BONDRULE >

The SHIFT rules apply to a particular case if the bonding pattern depends on some properties
of neighboring beads. For example, the rule R12 describes a pseudo–bond, only if the first–
neighbor (in the anti–sense direction) of bead one and first–neighbor (in anti–sense direction)
of bead two are connected by Watson–Crick canonical bond.

7. Combine other rules:

<BONDRULE name="R13">

<!-- AND is default inside a BONDRULE

and could be omitted in this example -->

<AND >

<OR >

<ATOM type="CA" />

<ATOM type="P" />

</OR>

<NOT >

<EXPR >atom1.isHelix </EXPR >

</NOT >

<NOT >

<EXPR >atom2.isHelix </EXPR >

<NOT >

</AND >

</BONDRULE >

One can use OR, AND and NOT tags to combine a rule by using the logical rules. If more than
one rule is included inside a BONDRULE, SHIFT or NOT tag, it is implicitly assumed that the
AND tag was used.

2.2.4 Potential Energy Functions

When bond rules are defined, the next step is to assign these rules to a potential energy function
term as in the following example:

<BOND_HARM name=" compl2">

<BONDRULE name=" compl2" />

<VAR name="r0">bond.dist </VAR >

<VAR name="k">5.0</VAR >

10Threshold of 0.000001 applies, the values lower than threshold are considered zero.
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</BOND_HARM >

Here, a harmonic potential pseudo–bond is created between the beads described by the compl2

bond rule (the potential and bond rule names can overlap). The potential parameters are de-
fined with an equilibrium distance equal to the distance in a reference structure and a force
constant equal to 5 kcal

molÅ
2 . In the parameter definition one can use the values connected to

the bond (bond.dist, bond.angle, bond.dihedral), atoms forming the bond (atom1.charge,
atom2.mass) or variables defined in the protocol/optimization file (which should be prefixed by
a global, e.g. global.PI). Potential terms are assigned to bonds in order they appear in the file.
If two potentials describe the interaction between the same beads, only the first in order will be
used and the second one will be ignored.

RedMDStream supports the following potentials:

1. Harmonic pseudo–bond potential

V (r) =
1

2
k(r − r0)2 (1)

tag: BOND HARM, parameters to declare: r0= r0 and k= k

2. Harmonic pseudo–angle potential

V (θ) =
1

2
kθ(θ − θ0)2 (2)

tag: ANG HARM, parameters to declare: theta0= θ0 and k= kθ

3. Harmonic pseudo–dihedral potential

V (α) =
2

2
kα(α− α0)2 (3)

tag: DIH HARM, parameters to declare: alpha0= α0 and k= kα

4. Morse pseudo–bond potential

V (r) = E0(1− e−α(r−r0))2 (4)

tag: BOND MORSE, parameters to declare: E0= E0, r0= r0 and alpha= α

5. Lennard-Jones pseudo–bond potential

V (r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(5)

tag: BOND LJ, parameters to declare: eps= ε and sigma= σ

6. Rigid pseudo–bond
This is a bond that has constant length during the simulation and is implemented with
RATTLE [1] or SHAKE [20] — depending on the simulation method.
tag: BOND RIGID, no need to declare parameters.
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7. Custom pseudo–bond potential This is a user–defined potential. It is defined as:

<BOND_CUST name=" custom1"

formula ="2* global.PI/log(r)*exp(-bond.dist*r*k)">

<BONDRULE name=" compl2" />

<VAR name="k">5.0</VAR >

</BOND_CUST >

with a similar definition for angle (ANG CUST) and dihedral (DIH CUST). RedMDStream pre-
calculates a table with energies and force values based on the distance (angle, dihedral) and
uses this table to interpolate the potential energies and forces during a simulation. One can
also overwrite the default function argument name using the parameter attribute and cut-
off using the cutoff attribute. To control granularity of the table one can use the following
attributes to BOND CUST and others:

• tabMin is the smallest distance in the table (default is 0.0 for a pseudo–bond and angle,
-π for a dihedral),

• tabMax is the largest distance in the table (default is the cut–off value for a pseudo–
bond, π for an angle and dihedral),

• tabSteps is the number of steps in the table.

For distances (angles/dihedrals) outside of the tabMin and tabMax range, the energies and
forces for a boundary value are assigned. If the SXML output is used, RedMDStream will
print in separate files the tabulated potentials in the column format r F E. This functionality
can be helpful in visualizing custom potentials, as well as in diagnosing problems.

8. Custom bond–angle potential

V (r, θ) = V1(r)V2(θ) (6)

This is a product of two custom potentials where the first one is dependent on 1-2 pseudo–
atom distance r and the second on 1-2-3 pseudo–atom angle θ. E.g.:

<BOND_ANGLE_CUST name=" custom2"

bond ="0.5*k*(r-r0)^2"

angle ="0.5* kTheta *(theta -deg(theta0 ))^2">

<BONDRULE name=" compl2" />

<VAR name="k">5.0</VAR >

<VAR name="r0">15.0</VAR >

<VAR name=" kTheta ">5.0</VAR >

<VAR name=" theta0 ">150.0</VAR >

</BOND_ANGLE_CUST >

This potential is tabulated using separate tables for pseudo–bond and angle terms. The settings
for both tables are provided independently. BOND ANGLE CUST attributes bondTabMin, bondTabMax
and bondTabSteps can be provided for the pseudo–bond part. BOND ANGLE CUST attributes
angTabMin, angTabMax and angTabSteps play a similar role for the angle part.
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2.2.5 Nonbonded Potential Energy Function

The nonbonded potentials are defined inside a NONBONDED section tags. They can be defined
for a particular pair of beads (by specifying their type) or for all beads (the ”default” potential).
An example of the NONBONDED section looks like this:

<NONBONDED >

<BOND_LJ name=" nonbLJ">

<VAR name="eps">3.0</VAR >

<VAR name=" sigma ">15.0</VAR >

</BOND_LJ >

<BOND_MORSE name=" morseNB" type1="P" type2 ="CA">

<VAR name="E0">3.0</VAR >

<VAR name="r0">15.0</VAR >

<VAR name=" alpha ">0.1</VAR >

</BOND_MORSE >

</NONBONDED >

The nonbonded potential accepts the following potentials from the above defined (BOND LJ, BOND MORSE,
BOND CUST), as well as the containing sphere type potential (B SPHERE) and Coulomb electrostatic
potentials (BOND ELEC) and (BOND ELEC2):

1. Containing sphere potential

~F = A · (Ro − r)−nê for r > Rcut (7)

This field assures that the molecules of the system do not move away from the system’s
center of mass farther than the containing sphere radius, Ro. ~F is a radial force acting on a
given molecule in the region between the containing sphere radius (Ro) and the user-specified
cut-off (Rcut). Parameters A and n (n ≥ 0) allow the user to modulate the amplitude and

radial dependence of ~F .
tag: B SPHERE, parameters to declare: A= A and n= n

2. Standard Coulomb potential

V (r) =
1

4πε0ε

q1q2

r
(8)

tag: BOND ELEC, parameters to declare: eps= ε

3. Shielded Coulomb potential

V (r) =
1

4πε0ε′r

q1q2

r
(9)

This is the Coulomb potential with dielectric constant increasing with distance: ε(r) = ε′r
tag: BOND ELEC2, parameters to declare: eps= ε′
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MD simulation
(Sec. 2.3.2)

Trajectory
analysis

(Sec. 2.3.3)

Distribution
analysis

(Sec. 2.3.4)

Protocol
(Sec. 2.3.1)

Protocol
XML file <PROTOCOL>

<SIMULATION ... >

<DISTRIBUTION ... >

<DISTRIBUTION ... >

<TRAJECTORY ... >

<ANALYSIS ... >

Figure 5: Relationship between different parts of the protocol XML file, along with the manual
section number and XML tag to switch between the parts.

2.3 Simulation Protocol

The simulation protocol consists of a set of commands to prepare, execute and analyze a CG
trajectory. The CG simulation is set with a particular topology defined in an XML file organized
by a set of rules described in the previous section. The general layout of the protocol XML file is
presented in Fig. 5.

2.3.1 Protocol XML File

The simulation protocol tag has to include a root tag PROTOCOL. Directives inside the PROTOCOL

tag are executed in a sequential order. If any of the directives stop, the program execution is also
stopped. The directives include:

1. Load another protocol file:

<PROTOCOL file=" filename" />

2. Define variable for equation parsing:

<VAR name="PI" >3.1415926 </VAR >

<VAR name="E">exp(1)</VAR >

Expression for the variable is placed inside the tags.

3. Print variable or expression value:

<PRINT var="var1" />

<PRINT > log(var1 * pi)<PRINT />

<PRINT description ="Var2 -4 sum"> var2+var3+var4 <PRINT />
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description is an optional attribute that can help understand the output.

4. Calculate a distance (or angle/dihedral angle) distribution:

<DISTRIBUTION name=" distr1" min ="0.0" max ="100.0" bins ="100" >

<EXPR > exp(-4*r) </EXPR >

</DISTRIBUTION >

Generates a distribution for the distances from 0.0 Å to 100 Å in 100 bins of an f(r) =
exp(−4r) function and saves it in memory under the name distr1).

One can also load a distribution from a text file (in every line there is a bin position and
number of counts separated by a space),

<DISTRIBUTION name=" distr4">

<TXTFILE file=" filename" />

</DISTRIBUTION >

load a distribution from a binary file generated by RedMDStream:

<DISTRIBUTION name=" distr5">

<BINFILE file=" filename" />

</DISTRIBUTION >

5. Define a coarse–grained mapping and topology in the same file:

<TOPOLOGY >

...

</TOPOLOGY >

or load from a different file:

<TOPOLOGY file="top.xml" />

See Section 2.2 for details on how to define topology.

6. Load a molecule structure file:

<MOLECULE name="mol1"/>

<PDB file=" file1.pdb" />

</MOLECULE >

<MOLECULE name="mol2"/>

<PQR file=" file2.pqr" />

</MOLECULE >

<MOLECULE name="mol3"/>

<PDBML file=" file3.xml.gz" />

</MOLECULE >

The above loads a PDB, PQR and PDBML (including gzip compressed PDBML). In addi-
tion, information about a secondary structure may be loaded:
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(a) Dot–bracket RNA file:

<MOLECULE name="mol5"/>

<PDB file=" file5.pdb" />

<RNA2D file=" file5.pdb.out" />

</MOLECULE >

This is a standard format used to describe the RNA 2D structure by the structure
prediction software [17] or structure analysis software [9]. A dot–bracket file may in-
clude one or multiple 2D structures, each in a separate line. Each structure might be
accompanied by a floating point number that signifies the probability of finding such
a structure. For such a case each particular interaction will have a probability calcu-
lated as a sum of probabilities of all structures it can be found in. For example in the
following file:

123456

((..)) 3.0

(....) 2.0

((())) 1.0

the interaction between bases 2–5 will be created with 3.0+1.0
3.0+2.0+1.0

= 0.66 strength (it
is always normalized to one). If no number is given in the line, we assume that all
structures are equally probable. Lines which contain characters other than (). or
white spaces are ignored, before the first appearance of (). .

(b) RNAView tertiary structure information:

<MOLECULE name="mol4"/>

<PDB file=" file4.pdb" />

<RNAVIEW file="file4.pdb.out" />

</MOLECULE >

The above loads a tertiary structure (canonical and noncanonical pairings) from a
file4.pdb.out file.

(c) Custom interaction file:

<MOLECULE name="mol6"/>

<PDB file=" file6.pdb" />

<INTERACTION file=" interaction_file" />

</MOLECULE >

Each line of the file should be formatted as follows: interactionName chainID1

resID1 chainID2 resID2 probability, with the last parameter being optional.

7. Load an ensemble of structures in the PDB format to generate a distance distribution:

<DIRECTORY name="dir" pdb=".pdb" scanSubdirs ="true">

<DISTRIBUTION name=" distr2" min ="0.0" max ="100.0" bins ="100"

bondrule ="rule1">

<TXTFILE save="file.txt" />
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<BINFILE save="file.distr" />

</DISTRIBUTION >

</DIRECTORY >

Analyzes all PDB files (with the extension .pdb) in a directory named dir and all its
subdirectories. Creates a bead distance distribution named distr2, based on a bond named
rule1 (see Sec. 2.2). If bondrule is omitted, the distribution will be calculated for the
distances between all beads. The distribution is calculated for the distances from 0.0 Å to
100.0 Å, in 100 bins and saved in memory as distr2, in a text file called file.txt and in
a binary file called file.distr.

8. Save a coarse–grained molecule structure:

<OUTPUT mol="mol1" pdb="mol1.cg.pdb" />

<OUTPUT mol="mol1" sxml="mol1.sxml" />

<OUTPUT mol="mol1" pdb="mol1.r1.pdb" atomrule ="rule1" />

<OUTPUT mol="mol1" pdb="mol1.r2.pdb" bondrule ="rule2" />

The above saves the mol1 coarse–grained structure to mol1.cg.pdb in the PDB format [3]
and both the coarse–grained structure and topology to a file mol1.sxml (the RedMD struc-
ture XML file that contains information about beads and interactions) [8]. One can also
filter the PDB file to select only these beads that conform with a particular atom rule (see
Sec. 2.2.2). One can also store in the PDB file, with the CONECT statements, information
about bonds satisfying a particular bond rule (see Sec. 2.2.3). This allows visualizing an effect
of a bond rule on a sample molecule. For large molecular complexes, such as a ribosome, the
residue number field width may become exceeded and this can lead to two different residues
having the same number. In this case one can use the useResSeqNum="false" attribute for
OUTPUT for RedMDStream to reassign residue numbers.

9. Run an MD simulation:

<SIMULATION mol="mol1" ...>

...

<ANALYZE >

...

</ANALYZE >

</SIMULATION >

The above means simulate a molecule named mol1, see Section 2.3.2 for detailed information
on SIMULATION tag. The trajectory analysis commands are enclosed in the ANALYSIS
tag and described in Section 2.3.3.

10. Load and analyze a saved DCD trajectory:

<TRAJECTORY mol="mol1" dcd="mol1.traj.dcd" cg="true">

<ANALYZE >

...

</ANALYZE >

</TRAJECTORY >
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See Section 2.3.3 for details on the analysis of a simulation trajectory enclosed in the ANAL-
YSIS tag.

2.3.2 Molecular Dynamics Simulation

For details on how a molecular dynamics simulation is performed (equations of motion, etc.) please
refer to Ref. [8] or RedMD manual (available at the http://bionano.cent.uw.edu.pl/Software/RedMD
webpage). The simulation execution tag depends on the simulation mode. For the integration
(NVE simulation) one should start the SIMULATION section in the following way:

<SIMULATION mol="mol1" mode=" integration" dt="10 fs">

...

</SIMULATION >

where all the properties are obligatory. A property named dt denotes the simulation time step.
One can use the time units (fs or ps); if left unitless, picoseconds will be used. The user may also
define how the simulation is saved by using the optional properties of the SIMULATION tag. By
default the simulation is stored and analyzed in memory. To save a trajectory to a file one has to
use the dcd property, for example:

<SIMULATION mol="mol1" mode=" integration"

dt="10 fs" dcd="mol1.dcd">

...

</SIMULATION >

If parallel calculations are performed, a suffix to a DCD file will be added, with a thread number
or MPI rank. To avoid overwriting the files, if two RedMDStream processes are to be executed
in one directory, one can use the dcdProc="true" option. With this option all the DCD files
will be suffixed with a unique process number. If one would like to append the trajectory to an
already existing DCD file, the option dcdAppend="true" will preserve the existing content of the
file (otherwise it will be truncated). If the append option is in charge, the preexisting frames of
the trajectory will also be used for the analysis.

Another simulation type is a simulation in the NVT ensemble with the Berendsen thermostat:

<SIMULATION mol="mol1" mode=" berendsen" dt="10 fs" tau="1">

...

</SIMULATION >

where tau denotes the coupling constant in ps.

Langevin dynamics is also available:

<SIMULATION mol="mol1" mode=" langevin" dt="10 fs"

gamma ="1" temp ="300" >

...

</SIMULATION >

with gamma the damping constant in ps−1 and temp the starting temperature for the initiation of
Langevin dynamics engine.
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and Brownian dynamics:

<SIMULATION mol="mol1" mode=" brownian" dt="10 fs"

hr ="1.3" temp ="300" >

...

</SIMULATION >

where hr is the default hydrodynamic radius (in Å). The hydrodynamic radius can be also set
as a HR variable for a particular atom type (see Sec. 2.2.2). It is important to set the starting
temperature with temp for the proper initiation of the Brownian dynamics engine.

In the SIMULATION tag one can also define the temperature which will be used to initialize
velocities for a molecule (default: 10 K) and tolerance for rigid bonds (default 0.001 Å):

<SIMULATION mol="mol1" mode=" langevin" dt="10 fs" gamma ="5.0"

temp ="310" rigid_tol ="0.01" >

...

</SIMULATION >

Inside the SIMULATION tag one can use the following commands:

1. Run minimization:

<MINIMIZE />

The structure is minimized using a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFDS) method.

2. Set temperature for initialization (if no dynamics is performed), Berendsen bath coupling,
Langevin dynamics or Brownian dynamics:

<SET_TEMP val ="310" />

The temperature pattern can be also defined for certain steps. For heating from 10 K to
300 K during 10000 simulation steps and next a constant temperature simulation one can
use the following command:

<SET_TEMP start ="10.0" end ="310.0" steps ="1000"/ >

or if one wants to use the time units instead:

<SET_TEMP start ="10.0" end ="310.0" time ="10 ps"/>

If the start tag is not defined, RedMDStream will calculate the current temperature of the
molecule and take it as a starting value.

One can also use a custom expression to define temperature. In such a case it has to be
enclosed between the opening and closing SET TEMP tags (the step variable holds the current
step value):

<SET_TEMP >

310.0 * exp (-step /10000)

</SET_TEMP >
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3. Unfold a biomolecule:

<UNFOLD dist ="4.8" />

<UNFOLD topology =" linear" dist ="4.8" />

The above unfolds a biomolecule to a circle (default) or linear conformation, with the bead
distance equal to the dist parameter (compulsory). A small random number (-0.1 — 0.1 Å)
is added to the z coordinate. Unfolding only affects a conformation present in a simulation
and does not change the reference structure of a molecule, used e.g. as a reference in RMSD
or RMSF calculations.

4. Perform single point forces and energy calculation:

<SINGLE_POINT />

For the loaded conformation the above calculates the energy of the molecule and forces
acting on each bead. This can be helpful in understanding the force field mechanics and
possible stability problems.

5. Perform CG MD simulation:

<STEP steps ="10000" />

This performs 10000 steps of a simulation. One can also define the number of steps in time
units:

<STEP time ="10 ns" />

which can be more convenient for a longer simulation setup (fs/ps/us11/ms are available).
There are also options to control the size of the saved trajectory. This can be defined either
by setting the interval in the number of steps:

<STEP time ="10 ns" saveFreq ="1000" />

or by setting a target amount of frames to be saved in total:

<STEP time ="10 ns" saveFrames ="1000" />

The last option is not to save at all:

<STEP time ="10 ns" noSave ="true" />

6. Print system temperature:

<TEMPERATURE />

Prints the current temperature of the system, calculated from the velocities, and includes
information about the intended temperature used by the thermostat.

7. Print system energy:

<ENERGY printAll ="true"/>

11for microsecond
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Prints the energy of the system. The output contains the total energy, as well as particular
energy contributions (potential or kinetic) and terms (e.g., harmonic, Coulomb, etc.).

One can also save the energy value in the RedMDStream internal variable with the following
tag:

<ENERGY saveAll ="true"/>

to save various energy terms (the energy type name is used as a variable name) or

<ENERGY type=" NONBONDED" var=" nonb_enrgy "/>

where the energy type is set in the type attribute and the variable name in var. For possible
energy types please first use the printAll="true" option.

8. Print system conformation:

<OUTPUT pdb="out1.pdb" />

<OUTPUT pdb="out2.pdb" force ="true" />

<OUTPUT pdb="out3.pdb" momenta ="true" />

<OUTPUT pdb="out4.pdb" velocity ="true" />

<OUTPUT pdb="out5.pdb" atomrule ="rule1" />

<OUTPUT pdb="out6.pdb" bondrule ="rule2" />

The above outputs the current state of the molecule in a simulation. One can use the options
to print force/momenta/velocity instead of coordinates in the PDB [3]. One can also filter
the output using an atom rule rule1 (see Sec. 2.2.2) or add the connectivity information in
the PDB file according to a particular bond rule rule2 (see Sec. 2.2.3).

9. Analyze trajectory:

<ANALYZE beg ="0" end ="1000" stride ="20">

...

</ANALYZE >

For tags allowed inside ANALYZE see Section 2.3.3. The analyze keyword allows specifying
the start and end frame for the analysis; this is the frame number in a trajectory, not the
number of the simulation step or time; the numbering starts from 0, the stride specifies how
many frames to omit. By default the analysis begins at first (zero) frame, ends at the last
frame, and includes all frames (stride is 1).

2.3.3 Trajectory Analysis

RedMDStream provides three ways to analyze trajectories (see Ref. [14] on how each measure is
defined):

1. Structural fidelity by means of root mean square deviation (RMSD)
RedMDStream calculates RMSD using the Kabsch algorithm [12] to account for the best
translation and rotation (that minimizes RMSD) of a molecule prior to calculating the RMSD
value. The calculated average RMSD from the whole trajectory can be saved to a variable:
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<RMSD var="rmsd" />

or RMSD for each frame printed to a file:

<RMSD file="mol1.rmsd" />

2. Structure mobility by means of root mean square fluctuations (RMSF)
To calculate average RMSF one can use the following tag:

<RMSF var="rmsf" />

To save RMSF to a file for each bead:

<RMSF file="mol1.rmsf" />

RedMDStream aligns the trajectory before calculating RMSF to remove translations and

rotations of the molecule during simulation. By default the RMSF units (Å
2
) are used,

however one can also use the B-factor units by adding align="true". This can be turned
off by adding align="false" to the XML tag:

<RMSF var="rmsf" align="false" bFactor ="true" />

RedMDStream can also compare RMSF with the one included in the original PDB/PDBML
file (in this case always B-factor units are used):

<RMSF var=" rmsfDiff" align ="true" />

saves in a variable rmsfDiff the sum of absolute values of differences between the B-factors
in each frame as compared to a reference. In a similar way RMSF can be compared with
data stored in a file derived from analysis of a molecular dynamics trajectory, e.g. made
using cpptraj:

<RMSF var=" rmsfDiff" file=" file1" align="true" />

file1 should be a file with a number of lines equal to the number of CG beads in a system,
ordered in the same way as in RedMDStream (e.g. as in a PDB file created from the
structure). Each line should have two numbers: atom number (ignored) and RMSF value.
One can impose the B-factor units with bFactor="true".

3. Distance distribution functions
Distance distribution functions for beads can be calculated from the trajectory using the
DISTRIBUTION tag:

<DISTRIBUTION min ="0.0" max ="100.0" bins ="100"

bondrule ="rule1" name=" distr3" />

Creates a bead distance distribution named distr3, based on a bond named rule1 (see
Sec. 2.2). If bondrule is omitted, the distribution will be calculated for distances between
all beads. The distribution is calculated for the distances from 0.0 Å to 100.0 Å, in 100
bins and saved in memory as distr3. As a reference one can use also a previously saved
distribution. In such case the distance range and bin number are taken from a reference
distribution and should not be specified:
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<DISTRIBUTION bondrule ="rule1" name=" distr4" ref=" distr1" />

Distributions can be calculated also for angles and dihedrals:

<DISTRIBUTION bondrule ="rule2" name=" distr5"

min ="0.0" max ="180.0" bins ="100" type=" angle">

...

</DISTRIBUTION >

<DISTRIBUTION bondrule ="rule3" name=" distr6"

min =" -50.0" max ="50.0"

bins ="100" type=" dihedral">

...

</DISTRIBUTION >

The angle and dihedral values are provided in degrees. To compare two distributions, one
should provide the name of a reference distribution (previously defined by the DISTRIBUTION
tag):

<DISTRIBUTION bondrule ="rule1" name=" distr3"

ref=" distr1">

...

</DISTRIBUTION >

In this case do not provide the beginning, end values and number of bins because these
are taken to match the reference distribution. The analysis and comparison methods are
described in Sec. 2.3.4.

2.3.4 Distribution Analysis

Distribution analysis is performed inside the DISTRIBUTION tag. The following options are avail-
able:

1. Normalize distribution:

<DISTRIBUTION ...>

...

<NORMALIZE />

...

</DISTRIBUTION >

Sums all bins equal to 1.0.

2. Multiply distribution by a function:

<DISTRIBUTION ...>

...

<MULTIPLY > ln(r) </MULTIPLY >

...

</DISTRIBUTION >
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Multiplies a distribution by a given function. r is always used as a parameter.

3. Divide distribution by a function:

<DISTRIBUTION ...>

...

<DIVIDE > r^2 </DIVIDE >

...

</DISTRIBUTION >

Divides a distribution by a given function. r is always used as a parameter.

4. Find maximum position:

<DISTRIBUTION ...>

...

<MAX_POSITION var="max" />

...

</DISTRIBUTION >

Stores the position of the most occupied bin in a variable provided in the attribute var.

5. Calculate distribution difference using the Hodgkin index:

<DISTRIBUTION ref ="..." ...>

...

<HODGKIN var="hi" />

...

</DISTRIBUTION >

Calculates the Hodgkin index [14, 11] :

HI = 1− 2
∑

i d1(i)d2(i)∑
i d

2
1(i) +

∑
i d

2
2(i)

(10)

and stores it in a variable specified by the attribute var. The Hodgkin index is in the range
from 0.0 to 1.0. For the variant of the Hodgkin index adopted in RedMDStream the low
index means similarity and index close to 1 means dissimilarity. The above works only if a
reference distribution is provided.

6. Calculate distribution difference using the Kolmogorov–Smirnov measure:

<DISTRIBUTION ref ="..." ...>

...

<K-S var="k-s" />

...

</DISTRIBUTION >

performs the Kolmogorov-Smirnov test of equality of the two distributions. This test finds
the maximum difference between two cumulative distribution functions [19]. At the moment,
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we only calculate the value of the test itself and it is not changed into the probability space.
When K-S is used, the measure is stored in a variable pointed by the var attribute. This
value will be in the range from 0.0 to 1.0, with the lower values signifying better similarity
of the two distributions. This option works only if a reference distribution is provided.

7. Save distribution in binary format:

<DISTRIBUTION ...>

...

<BINFILE save="distr.bin" />

...

</DISTRIBUTION >

The binary format is only accessible by RedMDStream and allows avoiding small errors in
the floating point number conversion from the internal representation to text and vice versa.
The binary format is the preferred one for the distributions that are later to be read in by
RedMDStream.

8. Save distribution in text format:

<DISTRIBUTION ...>

...

<TXTFILE save="distr.txt" />

...

</DISTRIBUTION >

Saves the distribution in a text file; the first column is the position of the bin center and the
second column – bin occupancy.
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2.4 Model Optimization

The model optimization tools help to design models as well as give feedback how a particular
modification of a model affects its ability to simulate biomolecules.

The optimization mode of RedMDStream helps to answer the following questions: (i) what
is the optimal dihedral angle force constant to simulate a DNA helix? (ii) what is the effect of
changing the positioning of a coarse-grained bead from the center of mass of an amino acid to its
carbon-α? (iii) how changing one force field parameter affects the coarse-grained model? (iv) are
there any correlations between the force field parameters? [14].

For the above purpose, a scoring function f(x1, ..., xn) is defined:

f(x1, ..., xn) =
M∑
i

wisi (11)

The arguments of the function x1 to xn are the parameters that affect the behavior of the CG
model. Most likely these are the parameters of the potential energy terms but also the variables
that turn on and off particular interactions, switch between the bead types and positions or even
protocol parameters (such as simulation temperature).

The value of the above function is a weighted sum of certain observables that assess/measure
the quality of the model. These observables are derived from the analysis of the CG MD trajectory
and include the distance distribution analyses, structural similarity and atom mobility as compared
with a reference (see Sec. 2.3.3). RedMDStream provides a few methods that either find a best
set of parameters x1 to xn or give an overview of how f(x) is affected by changing x1 to xn.

Note the high complexity of the problem. First, the function f(x) is in general not a single
minimum function. Second, since f(x) results from the simulations, its value is affected by un-
certainty. Each simulation is started with a different draw of velocities and is of finite number
of steps, so each trajectory may cover different parts of conformational space of the system. Our
studies [14] show that the value of f(x) of Eq. 11 may have a standard deviation of 10-20% if
simulations are repeated.

To find optimal parameters two strategies are implemented in RedMDStream: metaheuristic
and local optimization [10]. Metaheuristic algorithms, like evolutionary algorithm (see Sec. 2.4.2)
or particle swarm optimization (see Sec. 2.4.3), look for a solution using certain rules that mimic
the behavior of systems found in nature. On the other hand, local methods, like the simplex
method (see Sec. 2.4.4), use a set of strict rules that explore the parameter space close to a given
solution to systematically improve the model. In the optimization problem in CG MD models, this
systematic improvement is a burden. First, the multi–minima nature of this problem sometimes
requires the algorithm to ”step back” and accept a worse solution to finally get to the best one.
Second, the function uncertainty is a problem. Such systematic approach usually relies on the
difference between two scores to find the direction. But when one subtracts two numbers of
similar magnitude, the difference is usually small and can be smaller than the error associated
with uncertainty, leading to a random behavior of the optimizer. Loosening the optimization rules
is a good remedy in that case. The local optimization always accepts the better solution and
metaheuristic approaches allow some wrong solutions in a next iteration.

RedMDStream also implements three methods that provide information about the relationship
between the parameter and scoring function without performing the actual optimization. These
methods are the parameter grid analysis, random analysis and gradient calculation.
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2.4.1 Optimization XML File

The optimization control file defines how to perform optimization of a CG model. The OPTIMIZATION
root tag has an attribute method that selects one of the available methods:

<OPTIMIZATION method ="evo">

...

</OPTIMIZATION >

Inside this tag the following three sections must be declared (note that each can be declared
only once):

1. Arguments and scoring function (DATA)
This section defines the arguments for the function defined in Eq. 11:

<DATA >

<PARAMETER name="p1" min ="0.0" max ="1.0" />

<PARAMETER name="p2" min ="5.0" max ="7.0" />

as well as the terms, their limits/bounds12 and relative weights for the function defined in
this equation:

<SCORE name="s1" value="rmsd" max ="50" weight ="0.7" />

<SCORE name="s2" value="rmsf" min ="20"

max ="100" weight ="0.3" />

</DATA >

In the above example the simulation protocol knows the variables p1 (in the range 0.0 —
1.0) and p2 (in the range 5.0 — 7.0) and has to create the variables rmsd and rmsf. The
former one will be taken with the weight of 70% and the values between 0 and 50. The
latter one will be taken with the weight of 30% and the values between 20 and 100.

2. Simulation protocol (PROTOCOL)
The simulation protocol is defined, either by referencing a file:

<PROTOCOL name="run.xml" />

or by embedding all the commands:

<PROTOCOL >

...

</PROTOCOL >

The protocol can be set to be calculated multiple times to account for errors in calculating
the function defined in Eq. 11:

<PROTOCOL name="run.xml" runs ="10"/ >

12RedMDStream scores are normalized in the 0.0 to 1.0 range. Therefore, if sli and sui are allowed lower and
upper bounds for the i-th score (by default 0.0 and 1.0), the score will be transformed using the equation: s′i =
(si − sli)/(sui − sli), if between the bounds and equal to 0.0 if lower than sl and 1.0 if higher than su.
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In the above case the protocol from the file run.xml will be executed 10 times and the
scores will be averaged with their standard deviation recorded. Performing multiple runs
may help determine the scale of the score uncertainty and give an idea how to overcome this
uncertainty problem.

3. Optimization options (OPTIONS)
This section controls the optimization process. Most of the provided options are specific for
a particular optimization method and therefore they will be described later, in Secs. 2.4.2-
2.4.7. Two tags are shared among all the methods:

(a) NORMALIZE TOTAL:

<OPTIONS >

<NORMALIZE_TOTAL />

...

</OPTIONS >

which normalizes the weights for the parameters in a way that their sum equals to 1.0
and the final score is in the range from 0.0 to 1.0.

(b) PROB COMAPRISON:

<OPTIONS >

<PROB_COMPARISON />

...

</OPTIONS >

toggles the probabilistic comparison of two CG MD models. Without this option Red-
MDStream uses only the average weighted score to compare the models. However, this
type of comparison can be misleading if a score differs only by a small margin. If the
MD simulation protocol is executed multiple times (for runs option higher than 1 in
the PROTOCOL tag), RedMDStream records the score averaged from multiple MD runs,
as well as the standard deviation over multiple runs, which estimate the error of finding
the score. With both the average and its standard deviation, the Z-test can be applies
to find the probability of the hypothesis that model 1 is better than model 2. According
to this probability model 1 is returned as the answer to the compare query.

2.4.2 Evolutionary Algorithm

Evolutionary algorithm mimics Darwinian evolution to optimize multi–argument functions. It is
a metaheuristic algorithm so it does not guarantee finding an optimal result, however it has been
proven successful in solving many problems. [10]

The function arguments (x1 to xn in Eq. 11) in the evolutionary algorithm nomenclature are
called genes13 and their vector is considered a chromosome. The observables (si to sM in Eq. 11)
are considered phenes and their weighted sum a phenotype. The aim of this algorithm is to find a
set of genes that result in the best phenotype. The general outline of the procedure is the following
(see also Fig. 6 and Ref. [14] for details):

13In italic we type the first occurrence of a word that has a specific meaning in the jargon of a particular
optimization type.
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Elitism - best solutions are transferred intact for the next iteration

Crossing over - part of the parameter 
set is exchanged with a di�erent set

Point mutation - single parameter 
is randomly modi�ed

r0 = 5 Å θ0 = 152o φ0 = 18o ε = 80ri:j
0 = 18 Å

Generation (iteration) 1 Generation (iteration) 2

Figure 6: Schematic description of the evolutionary algorithm.

1. Initiation: create a pool of chromosomes and calculate their phenotypes.

2. Elitism: move the best solutions to the new pool without any modifications.

3. Mating: select pairs of chromosomes for mating, giving higher probability for the ones with
a better phenotype.

4. Crossing–over: mix chromosomes to create a new gene pool.

5. Mutations: introduce random modifications to extend the gene pool.

General outline of the evolutionary algorithm file is:

<OPTIMIZATION method ="evo">

<PROTOCOL ... />

<DATA >

...

</DATA >

<OPTIONS >

<FILE save=" optimize.result"

saveTxt =" optimize.result.csv" />

<ITERATION size ="16" number ="128"/ >

<ELITE size ="4" />

<MATING type=" tournament" />

<MUTATION type="gauss" tolerance ="0.1" />

<CROSSOVER blending ="1.0" />
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</OPTIONS >

</OPTIMIZATION >

The PROTOCOL and DATA tags were already described in Sec. 2.4.1. In the OPTIONS tag one can set
the parameters of the evolutionary algorithm:

1. General parameters
In the ITERATION tag one can control the size of the gene pool (the number of chromosomes
used) using the size attribute and the number of the evolutionary algorithm iterations
performed in the number tag.

2. Elitism
The ELITE tag controls the process of moving the chromosomes with the best scoring phe-
notypes intact to the new iteration (i.e., without applying crossing–over and mutations).
Our previous studies show that a small number of elite members stabilizes the population
and leads to a better final result. [14] The number of elite chromosomes is set by the size

attribute. Setting this number does not alter the total number of chromosomes, the more the
elite members, the less chromosomes will be generated by the standard procedure. Since the
elite chromosomes are by default moved intact, their chromosome is also copied. However,
the user may request to recalculate them by using the recalc="true" attribute, e.g.:

<ELITE size ="4" recalc ="true" />

In this case the elite chromosome score will be recalculated and combined with the existing
score, providing better phenotype estimation for elite members.

3. Mating
The MATING tag controls the chromosome mating process. Three selection methods are
available. The default one is the tournament selection: two chromosomes are randomly
picked and the one with a better phenotype is selected (this method can be used with a
probabilistic comparison described in Sec. 2.4.1).

One can also use the fitness choice:

<MATING fitness ="true" />

where the chromosome for mating is randomly selected from the gene pool with the selection
probability proportional to the phenotype.

Similar is the rank choice:

<MATING rank="true" />

but the probability is proportional to the rank in the phenotype list, not to the actual score.
If the phenotype scores are unevenly distributed among the gene pool, the rank selection
can do a better job in distinguishing the chromosomes.

4. Crossing–over
The way two chromosomes are combined is defined in the CROSSOVER tag. When the parent
chromosomes, (x1, x2, ..., xn) and (y1, y2, ..., yn), were selected in mating, they are next mixed
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in a crossing–over operation. The simplest way is a single point cross–over; a single gene is
selected and all genes following the selected one are flipped:

(x1, x2, ..., xp−1, xp − β(yp − xp), yp+1, ...yn) , (12)

(y1, y2, ..., yp−1, yp − β(xp − yp), xp+1, ...xn) , (13)

where β is a random number ranging from 0.0 to 1.0.

Alternatively one can select the blending crossing–over:

<CROSSOVER blending ="1.0" />

where the number in the blending attribute corresponds to the probability of using this
type of cross–over (as in RedMDStream one can use all three crossing–over methods simul-
taneously with different probabilities). In the blending cross–over new solutions are created
by ”blending” parent gene values:

(x1 − β ∗ (y1 − x1), x2 − β ∗ (y2 − x2), ..., xn − β ∗ (yn − xn)) , (14)

(y1 − β ∗ (x1 − y1), y2 − β ∗ (x2 − y2), ..., yn − β ∗ (xn − yn)) , (15)

where β is a random number ranging from 0.0 to 1.0.

Finally, the blending extrapolating cross–over is available:

<CROSSOVER blending ="0.5" extrapolate ="0.2"

extrapolateFactor ="0.5" />

where the number in extrapolate represents the probability of using extrapolate crossing–
over (the remaining probability is applied to a single point cross–over). A blending cross–over
can also extend the gene pool by creating three children:

(0.5x1 + 0.5y1, 0.5x2 + 0.5y2, ..., 0.5xn + 0.5yn) , (16)

((1.0 + α)x1 − αy1, (1.0 + α)x2 − αy2, ..., (1.0 + α)xn − αyn) , (17)

(−αx1 + (1.0 + α)y1,−αx2 + (1.0 + α)y2, ...,−αxn + (1.0 + α)yn) . (18)

where α is set by the extrapolateFactor attribute.

5. Mutation
Random point mutations are controlled by the MUTATION tag. Mutations are applied after
generating the chromosomes with crossing–over. They are applied with a probability set by
the probability attribute:

<MUTATION probability ="0.1" />
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By default a gene selected for mutation has a new value assigned from the available spectrum,
without any preference from the old value.

One can also use Gaussian mutations, where a new value is found according to the Gaussian
function probability around the old value:

<MUTATION probability ="0.1" gauss="true" tolerance ="0.1" />

Since in this case a new value can be found outside the allowed spectrum, one can use the
tolerance value to set the allowed margin outside the minimal and maximal gene value.

6. Input/output files
The FILE tag specifies how to load and save the data during optimization:

<FILE save=" optimize.result"

saveTxt =" optimize.result.csv" />

<FILE load="old.optimize.result"

save=" optimize.result"

saveTxt =" optimize.result.csv" />

<FILE loadTxt ="old.optimize.result.csv"

save=" optimize.result"

saveTxt =" optimize.result.csv"

separator ="," />

One way is to use binary data – a more computer friendly storage (more effective space and
information). The load attribute points to a binary file that should be loaded with previous
results. The save attribute points to a binary file to save the results after each generation.

The other way are the text files, which are human readable. The loadTxt attribute points
to a text file that should be loaded with previous results. The saveTxt attribute points to
a text file to save the results after each generation. These files can be opened and analysed
by a spreadsheet like LibreOffice Calc or Microsoft Excel. Please see Sec. 2.4.8 for tips and
tools on analyzing the files. One can specify the field separator for the CSV format (space
by default) using the separator attribute.

Note, that there is an important difference between loading the binary and text files. Binary
files are used to resume an ongoing simulation and contain the whole generation, with scores,
etc. To run properly they require exactly the same optimization setup. Text files on the
other hand do not contain all the necessary information14 and are merely used to create a new
generation by taking the best solutions found in the text files. Optimization results saved
in a text format might be imported in RedMDStream between different optimization types.
They can also come from RedMDStream optimization with other parameters (parameters
with the same names are copied and the ones missing in the loaded text file are randomly
generated) or other score observables (only the final score is used).

14E.g., text files contain only the average score and its standard deviation, not the scores of all respective runs,
therefore other trials cannot be added with additional recalculations for elite members.
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Figure 7: Schematic description of the particle swarm optimization method.

2.4.3 Particle Swarm Optimization

Particle swarm optimization [13, 10] is a second metaheuristic optimization method implemented
in RedMDStream. In this method the optimized models mimic a swarm of interacting particles.
The main advantage of the algorithm lies in its simplicity since it is controlled by only three
parameters ω, ψp and ψg in contrast to a much large number of parameters and options in the
evolutionary algorithm.

In the particle swarm optimization algorithm the arguments xi of the function of Eq. 11 are
considered the coordinates of a particle. Each particle besides coordinates has a set velocity, which
is randomly assigned in the beginning. In each iteration the new velocity v1 and position r1 of
the particle are calculated:

v1 = ω v0 + ψp αp(rglobal − r0) + ψg αg(rlocal − r0) , (19)

r1 = r0 + v , (20)

where αp, αg are random numbers in the range from 0 to 1. rglobal is a position of the best scoring
particle updated during the algorithm execution and rlocal is a position of a specific particle with
the best score (set to initial position during initialization). The ω parameter controls the effect of
decreasing velocity of the molecule, where ψp controls the attraction to swarm–wise best scoring
position and ψg controls the attraction to particle–wise best scoring position. Please see Fig. 7
for a schematic drawing of the algorithm.
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The optimization XML file for the particle swarm optimization should be formatted as:

<OPTIMIZATION method ="pso">

<PROTOCOL ... />

<DATA >

...

</DATA >

<OPTIONS >

<FILE save=" optimize.result"

saveTxt =" optimize.result.csv" />

<ITERATION size ="16" number ="128"/ >

<OMEGA val ="0.9" />

<PSI_P val ="0.1" />

<PSI_G val ="0.1" />

</OPTIONS >

</OPTIMIZATION >

where the PROTOCOL and DATA tags were already described in Sec. 2.4.1. ITERATION tag controls
the size of the swarm (size attribute) and number of iterations (number attribute). OMEGA, PSI P

and PSI G define the values of parameters ω, ψp and ψg specified in subsequent paragraph. For
the treatment of input/output files (FILE) see the notes for the evolutionary algorithm on page 6
since they apply in full to the particle swarm optimization (although the binary files are not
interchangeable between the evolutionary algorithm and particle swarm optimization).

2.4.4 Simplex Optimization

The simplex algorithm [18] is a local optimization method. The method contains a set of rules
that lead to finding the best solution in the vicinity of a provided started point. The simplex
algorithm does not involve any random number generator based decisions. This is one of a few
local optimization methods that does not involve gradient calculation and for this reason it was
implemented in RedMDStream.

If the scoring function (Eq. 11) takes n arguments then at every iteration of the algorithm it
needs n + 1 models. The parameters of these models form a n dimensional simplex and this is
where the algorithm name comes from. The algorithm scheme is as follows (see also Fig. 8 for
reference):

1. Rank models according to their score.

2. Select the worst model and reflect it around the simplex (Fig. 8A).

3. If step 2 resulted in a better solution, try to expand further reflection (Fig. 8B).
If this move improved over the solution from point 2, exchange the worst node to the
expanded node and finish the iteration.
If this move did not improve over the solution from point 2, exchange the worst node to the
reflected one and finish the iteration.

4. If step 2 did not improve the solution, try to contract the simplex edge (Fig. 8C). If the
node gave a better solution than the original worst node, exchange it with the contracted
node and finish the iteration.



2 FUNCTIONALITY 48

A. Re�ection B. Expansion

C. Contraction D. Reduction

p1

p2

p1

p2

p1

p2

p1

p2

Figure 8: Simplex optimization schematics for a 2D optimization.

5. Reduce the simplex, leaving only the best solution in place (Fig. 8D).

The optimization XML file for the simplex method should be formatted as:

<OPTIMIZATION method =" simplex">

<PROTOCOL ... />

<DATA >

...

</DATA >

<OPTIONS >

<FILE saveTxt =" optimize.result.csv" />

<ITERATION number ="128"/ >

</OPTIONS >

</OPTIMIZATION >

where the PROTOCOL and DATA tags were already described in Sec. 2.4.1. The simplex optimization
method implemented is unconstrained so we do not guarantee that the parameter values will
remain in the ranges specified inside the DATA section. The ITERATION tag controls the number
of simplex algorithm iterations (the number attribute). One can alter the default behavior of the
simplex operations by using the following tags inside the OPTIONS section:

1. Initial simplex formation
The simplex algorithm starts with a single point, which can be either randomly selected in
allowed range:
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<RANDOM_START />

or placed in a certain part of the allowed spectrum:

<START val ="0.25" />

where the val attribute controls the percentage between the min and max parameter value
starting point (default is 25%).

From the starting point simplex is being built in each direction. The length of each direction
can be either set directly:

<UNITDIST val ="0.5" />

with a fixed percentage of the range between the minimal and maximal parameter value
or randomly:

<RANDOM_UNITDIST />

An alternative way to initialize the simplex algorithm is to seed it with the results of other
RedMDStream optimization:

<ITERATION number ="128" size ="5" />

<FILE loadTxt =" optimize.results.csv"

saveTxt =" simplex.csv" />

In this case the initial starting points for the simplex algorithm will be loaded from a text file
specified in the loadTxt attribute. The ITERATION tag size algorithm controls how many
points are loaded. Each starting point is connected with a separate optimization. These
optimizations are performed in parallel if OpenMP is enabled. The results are saved to a
file mentioned in the saveTxt attribute.

2. Reflection

<ALPHA val ="1.0" />

The ALPHA parameter controls how far the worst simplex node is reflected. Default is 1.0.

3. Expansion

<GAMMA val ="2.0" />

The GAMMA parameter controls how far the worst simplex node is expanded. Default is 2.0.

4. Contraction

<RHO val =" -0.5" />

The RHO parameter controls how far the worst simplex node is contracted. Default is -0.5.

5. Reduction

<SIGMA val ="0.5" />
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The SIGMA parameter controls how far the worst simplex node is contracted. Default is 0.5.

The simplex mode does not allow loading or saving binary files. To save the text files one
should use the following option:

<FILE saveTxt =" simplex.csv" />

See Sec. 2.4.8 for tips and tools on analyzing the output text file.
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Figure 9: Schemes of different calculation modes.

2.4.5 Grid Parameter Calculation

Grid calculations can be used to find a general landscape of a scoring function (Eq. 11) in a desired
parameter range. In this mode the function is calculated for every point on a multidimensional grid,
each dimension corresponding to a scoring function argument. See Fig. 9B for a two dimensional
grid example. In this mode the optimization XML file has the following structure:

<OPTIMIZATION method ="grid">

<PROTOCOL ... />

<DATA >

...

</DATA >

<OPTIONS >

<STEPS val ="8" />

<FILE saveTxt =" optimize.result.csv" />

</OPTIONS >

</OPTIMIZATION >

The PROTOCOL and DATA tags were already described in Sec. 2.4.1. The val attribute of the STEPS

tag corresponds to the number of points p calculated for each dimension, without counting the
points corresponding to the minimum and maximum value of the function. (p + 2)n points will
be calculated, where n is the number of dimensions, therefore this mode should be used for low
number of independent function arguments. The results are saved to a file defined in the saveTxt
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file of FILE tag. Please see Sec. 2.4.8 for tips and tools on analyzing the output file. In this mode
there is no option to load and save data in a binary format.

2.4.6 Gradient and Hessian Calculations

The gradient calculation provides a way to analyze the local landscape of the scoring function
(Eq. 11). In this mode a particular set of arguments is selected and then a gradient vector or
hessian matrix are calculated (see Fig. 9C). Calculating these entities can help (i) understand
the effect of changing the parameters and (ii) answer the question if one should use the gradient
based optimization methods (the well-established gradient and hessian) or gradient–free methods
(with large error on calculating the gradient and hessian). Please note that at the moment
RedMDStream can not use the calculated gradient/hessian in the actual optimization.

The derivatives used to find the gradient or hessian are numerically approximated. Instead of
an infinitesimally small value dxi, a small, but noticeable, difference ∆i is used. To account for
this substitution and for possible imperfections of calculating f(x1, ..., xn) (Eq. 11), a numerical
derivative is found by using 2 points (default)15:

dg(x)

dx
≈ g(x+ ∆)− g(x−∆)

2∆
, (21)

or 4 points:
dg(x)

dx
≈ −g(x+ 2∆) + 8g(x+ ∆)− 8g(x−∆) + g(x− 2∆)

12∆
, (22)

or 6 points:

dg(x)

dx
≈ −g(x+ 3∆) + 9g(x+ 2∆)− 45g(x+ ∆) + 45g(x−∆)− 9g(x− 2∆) + g(x− 3∆)

60∆
.

(23)
For the gradient calculation the optimization XML file should have the following form:

<OPTIMIZATION method =" gradient">

<PROTOCOL ... />

<DATA >

...

</DATA >

<OPTIONS >

<DIFF val ="0.001" />

<FILE save=" gradient.csv"

saveTxt =" optimize.result.csv" />

</OPTIONS >

</OPTIMIZATION >

The PROTOCOL and DATA tags were already described in Sec. 2.4.1. The starting point is taken as the
average of the lower and higher bounds of each argument present in the DATA section. For the hes-
sian calculation in the first line one should exchange the method attribute to method="hessian".
The c coefficient to calculate the derivative is defined in the val attribute of the DIFF tag. The

15For clarity of the presentation numerical derivatives are shown for a single argument function, however this
also applies to partial derivatives used to find the hessian/gradient.
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difference is calculated for each argument separately, as ∆i = c(ui− li), where li and ui are, respec-
tively, the lower and upper bound of the i-th argument of the scoring function. In the OPTIONS

section one may also add the ACCURACY4 or ACCURACY6 tag to perform numerical differentiation
using the formulas of Eqs. 22 or 23. The gradient calculation mode does not support reading
of any file. However, the results of calculations can be stored in a text file name according to
the saveTxt attribute of the FILE tag. Please see Sec. 2.4.8 for tips and tools on analyzing the
output text file. One can also find the actual gradient or hessian value, without the details of the
performed CG MD simulations, in a file specified in the save attribute of the FILE tag.

2.4.7 Random Model Calculation

The random test provides a similar role as the grid test (Sec. 2.4.5), but the solutions are randomly
picked from the arguments range and not according to any spacing rules (see Fig. 9D). The
optimization XML file should be prepared according to the following general format:

<OPTIMIZATION method =" random">

<PROTOCOL ... />

<DATA >

...

</DATA >

<OPTIONS >

<ITERATION size ="1000" />

<FILE saveTxt =" optimize.result.csv" />

</OPTIONS >

</OPTIMIZATION >

where the ITERATION tag corresponds to the number of models to test the (size attribute and
the FILE tag contains information on a text file used to save results. Please see Sec. 2.4.8 for tips
and tools on analyzing the output file. The PROTOCOL and DATA tags were already described in
Sec. 2.4.1.

2.4.8 Analysis of the Output File

The optimization output text file can be imported into major spreadsheet, statistical or graph
plotting software. The RedMDStream application also contains a program to analyze and aggre-
gate such data (see Sec 2.4.9). For better compatibility a proper selection of the field separator
(the separator attribute) might be necessary, e.g. for some spreadsheets ”;” or ”,” could be the
best choice, but for the Gnuplot software ” ” (space) will be the most natural choice. The columns
are organized in the following order:

• Identification of the model: the iteration number and the solution number inside the iter-
ation. In evolutionary algorithm there is information if a solution is the elite one (if no
recalc="true" option was set, the elite solutions were moved from the previous generation
without recalculation and are redundant). In the output of the simplex algorithm there is
an additional column describing which simplex operation was used to generate this solution.

• Force field parameters.
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• Average total score and its standard deviation, based on multiple recalculation of the same
force field with different random number generator seed.

• Average score and its standard deviation for each scoring function term, based on multiple
recalculations of the same force field with different random number generator seed.

The format of the file is also presented in Fig. 10.
The analysis of the results could provide much more information than just the optimal force

field parameter set. For example, calculating the correlations of parameters with their score
(using the Pearson pairwise correlation coefficient) or plotting and eye inspecting the results,
might provide insight which force field parameters are crucial and which do not affect significantly
the final results. Also, one can calculate the Pearson pairwise correlation coefficient between
the parameter values in a selection of highest–scoring solutions to find if certain parameters are
dependent on each other, which might affect the Boltzmann inversion optimizations by different
software.

2.4.9 Analyzer of the Optimization File

To help obtain statistics, we provide a RedMDStream.optAnalyze tool which allows aggregating
and comparing the information from one or multiple optimization runs. Please see an example in
Sec. 3.3.6. RedMDStream.optAnalyze should be executed in the following way:

RedMDStream.optAnalyze <mode options> <other options>

<list of all CSV text files with optimization outputs>

The mode can be set as follows:

• --all Generates all statistics described below.

• --best Prints solutions according to their total score.

• --fileCount Counts the number of solutions in each file.

• --fileBest Prints solutions according to their total score, separately for each file.

• --fileAvg Prints the average solution for each file.

• --fileBest Prints the best solution in each iteration for each file.

• --fileAvg Prints the average solution in each iteration for each file.

• --bestSubscore Prints the best value of each score subcategory in each file.

• --paramFunc For each parameter creates a relationship between its value and the scoring
function term. The parameter space is divided into bins and for each bin the best score is
found.

• --paramFunc=<paramName> The same as above, but only for the parameter termed paramName.

Other options:
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<OPTIMIZATION method="evo">
   <DATA>
      <PARAMETER name="compl1K" min="0.0" max="50.0" />
      <PARAMETER name="compl2K" min="0.0" max="50.0" />      
      <SCORE name="RMSD" val="rmsd" max="10.0" weight="4.0" />
      <SCORE name="Compl1_KS" val="ks_compl1" max="1.0" weight="3.0" />
      <SCORE name="Compl2_KS" val="ks_compl2" max="1.0" weight="3.0" />
   </DATA>
   <PROTOCOL runs="5" �le="../protocol3.xml" />
   <OPTIONS>
      <ITERATION size="7" number="2" />
      <ELITE val="3" />
      <FILE saveTxt="evo.csv" />
      ...
   </OPTIONS>
</OPTIMIZATION>

Iter Memb Elite compl1K compl2K Total TotalStd RMSD RMSDStd Compl1_KS Compl1_KSStd Compl2_KS Compl2_KSStd
0 0 0 11.90 10.48 0.44 0.03 4.35 0.30 0.42 0.03 0.47 0.04
0 1 0 26.69 7.34 0.45 0.02 4.53 0.28 0.41 0.01 0.48 0.03
0 2 0 0.52 31.43 0.40 0.02 4.64 0.16 0.23 0.02 0.49 0.02
0 3 0 15.32 0.41 0.41 0.03 4.58 0.17 0.40 0.03 0.35 0.04
0 4 0 4.27 1.43 0.40 0.02 4.62 0.14 0.36 0.01 0.37 0.03
0 5 0 46.15 1.18 0.41 0.02 4.57 0.28 0.44 0.01 0.33 0.03
0 6 0 5.32 4.80 0.42 0.02 4.42 0.11 0.37 0.03 0.43 0.02
1 0 1 0.52 31.43 0.40 0.02 4.64 0.16 0.23 0.02 0.49 0.02
1 1 1 4.27 1.43 0.40 0.02 4.62 0.14 0.36 0.01 0.37 0.03
1 2 1 15.32 0.41 0.41 0.03 4.58 0.17 0.40 0.03 0.35 0.04
1 3 0 6.14 0.60 0.42 0.04 4.77 0.46 0.38 0.02 0.38 0.04
1 4 0 0.48 9.26 0.42 0.02 4.77 0.25 0.25 0.02 0.52 0.02
1 5 0 11.52 33.86 0.44 0.02 4.38 0.22 0.40 0.02 0.49 0.02
1 6 0 46.34 32.96 0.46 0.03 4.45 0.16 0.43 0.03 0.49 0.04

Total score of the solution 
and its standard deviation is 
positioned after parameter 
values and before scoring 
function term values.

First columns in the optimization 
output identify solution (algorithm 
iteration number, member number 
in iteration, elite status, etc.).

Scoring function 
paramter values are 
provided, with name of 
the parameter as a table 
heading.

Individual scoring function 
terms are provided, with name of 
the term listed in the heading. 
Values are presented before 
further normalization. Score 
values are followed by standard 
deviation, which describes how 
well multiple runs of the same 
protocol agree in score.

a.

b. Iter Memb Elite compl1K compl2K Total TotalStd RMSD RMSDStd Compl1_KS Compl1_KSStd Compl2_KS Compl2_KSStd
0 0 0 11.90 10.48 0.44 0.03 4.35 0.30 0.42 0.03 0.47 0.04
0 1 0 26.69 7.34 0.45 0.02 4.53 0.28 0.41 0.01 0.48 0.03
0 2 0 0.52 31.43 0.40 0.02 4.64 0.16 0.23 0.02 0.49 0.02
0 3 0 15.32 0.41 0.41 0.03 4.58 0.17 0.40 0.03 0.35 0.04

c.

Figure 10: Example of an output file from the RedMDStream optimization run. In (a) a sample
optimization XML file is presented. Parts of the file directly connected with the output file
structure are colored. In (b) a fragment of the text file is presented with (c) a table generated
from this data with a spreadsheet software, along with the description and position of fields.
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• -o <filename> or --output=<filename> Specifies the output file. Compulsory. (if the
--all or --paramFunc mode is used then the output specifies only a prefix)

• -s<sep. char> Field separator has to be consistent with the RedMDStream one.

• -i <num> or --iter=<num> Read only <num> iterations from the files.

• --minIter=<num> Read only iterations starting from <num> from the files.

• --maxIter=<num> Read only iterations up to <num> from the files.

• -r <num> or --read=<num> Read only first <num> from the files.

• -p <num> or --print=<num> Analyze and print only first <num> best solutions.

• -t <num> or --threshold=<num> Analyze only solutions with the total score lower than
<num>.

• --paramMin=<num> <num> is used as the lower bound for the parameter value in the --paramFunc
mode.

• --paramMax=<num> <num> is used as the upper bound for the parameter value in the --paramFunc
mode.

• -b <num> or --bins=<num> <num> is taken as the number of bins that divide the parameter
space from the lower to the upper bound in the --paramFunc mode.
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3 Examples

The examples for RedMDStream are in the Examples subdirectory and can be found after un-
packing the archive with the program. They are divided into categories corresponding to different
classes of input files for RedMD.

3.1 Topology XML Files

The topology XML file example folder contains four different examples of force fields. It is out of
the scope of this manual to explain these force fields in detail, please refer to a review paper [15]
or publications cited as a reference.

3.1.1 One Bead per Nucleotide Ribosome Model

In this example we present the implementation of a one-bead per nucleotide model of the ribosome
by Trylska et al. [22]. In this model ribosomal RNA is represented as a set of beads positioned
on phosphorus atoms and ribosomal proteins as a set of beads positioned on Cα carbons. Beads
are connected by (a) unbreakable harmonic bonds based on their sequence in the chain (1–2, 1–3
and 1–4 bonds), (b) unbreakable harmonic bonds based on their secondary structure (only in
RNA) and (c) ”elastic network” interactions, where the beads close to each other in the reference
structure are connected by breakable bonds (see Fig. 4). See Ref. [22] or [15] for details.

To run the example enter the Examples/Topology/Rib 1Bead directory and run RedMD-
Stream:

RedMDStream protocol.xml

RedMDStream will load the E. coli 70S ribosome structure present in 3DF3.xml.gz and 3DF4.xml.gz

PDBML files. Next, the program will apply the coarse–grained topology described in the topology.xml
file. The RedMD SXML ribosome.sxml output file will be created, containing the coarse–grained
structure with all the interactions, as well as ribosome.cg.pdb with a coarse–grained structure.
To better visualize the interactions additional PDB files are generated, each applying a different
bond rule:

• ribosome.cg.Pbond.pdb (RNA 1–2 sequence interactions), ribosome.cg.CAbond.pdb (pro-
tein 1–2 sequence interactions),

• ribosome.cg.Psec.pdb (RNA secondary structure interactions),

• ribosome.cg.Pdist.pdb (RNA ”elastic network” interactions),

• ribosome.cg.CAdist.pdb (protein ”elastic network” interactions) and

• ribosome.cg.PCAdist.pdb (RNA–protein ”elastic network” interactions).
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Figure 11: 16-base pair B–DNA helix (PDB code: 3BSE) in (a) a one bead per nucleotide DNA
model and (b) two beads per nucleotide model. In the first model (a) the green beads are cen-
tered on phosphorus atoms of the original structure, the green bonds go along the P-backbone,
the blue bonds are the i:j interactions, red i:(j+1) and yellow (i+1):(j+1). In the second model
(b) the green beads represent a backbone group, the red beads represent a base (different shades
of red represent different nucleotides). The interactions plotted are backbone–backbone bonds,
backbone–base and base–base bonds (complementary interactions, transparent due to their break-
able nature).
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3.1.2 One Bead per Nucleotide DNA Model

In this example we present the implementation of a one-bead per nucleotide model for DNA,
including entire plasmids, by Trovato et al. [21]. In this model nucleotides are represented as sin-
gle beads centered on phosphorus atoms. Beads from one chain are connected by pseudo–bonds,
pseudo–angles and pseudo–dihedrals. Beads connected by complementary pairing are connected
with 3 bonds (i:j, i:(j+1), (i+1):(j+1)). For details please refer to Ref. [21] or [15] and Fig. 11a.

To run the example enter the Examples/Topology/DNA 1Bead directory and run RedMD-
Stream:

RedMDStream protocol.xml

RedMDStream will load 16–base–pair B-DNA structure stored in the 3BSE.xml PDBML file and
apply coarse–grained topology described in the topology.xml file. The RedMD SXML 3BSE.sxml

output file will be created, containing the coarse–grained structure, along with tabulated poten-
tials and all interactions, as well as 3BSE.cg.pdb with a coarse–grained structure. To better
visualize the interactions additional PDB files are generated, each applying a different bond rule:

• 3BSE.cg.bond.pdb (RNA sequential pseudo–bonds),

• 3BSE.cg.ij.pdb (RNA i:j complementary pairing),

• 3BSE.cg.ij1.pdb (RNA i:(j+1) complementary pairing) and

• 3BSE.cg.i1j1.pdb (RNA (i+1):(j+1) complementary pairing).

3.1.3 One Bead per Nucleotide RNA Model

In this example we present a one-bead model of RNA optimized using the evolutionary algorithm
by Leonarski et al. [14]. The interaction pattern in the model is based on the DNA model of
Trovato et al. [21] presented in the previous paragraph. There are two optimized potential force
field parameter sets. One set is for equilibrium dynamics and the other one for structure predic-
tion. As noted in [14], the force field has to be parameterized for a specific purpose.

To run the example enter the Examples/Topology/RNA 1Bead directory and run RedMD-
Stream:

RedMDStream protocol.EqDyn.xml

RedMDStream protocol.StrPred.xml

The first protocol XML file creates two files: RedMD SXML 6TNA.EqDyn.sxml and PDB 6TNA.EqDyn.pdb.
The second protocol XML file creates files for the structure prediction model and in this case pro-
duces the RedMD SXML file 6TNA.StrPred.sxml. Along with this file a set of PDB files is
outputted corresponding to a reference structure and unfolded circle structure:
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• structure without any bonds annotated
(6TNA.StrPred.pdb and 6TNA.StrPred.unfolded.pdb),

• structure with sequential pseudo–bonds
(6TNA.StrPred.PPbond.pdb and 6TNA.StrPred.unfolded.PPbond.pdb)

• complementary i:j pairing
(6TNA.StrPred.ij.pdb and 6TNA.StrPred.unfolded.ij.pdb),

• complementary i:(j+1) pairing
(6TNA.StrPred.ij1.pdb and 6TNA.StrPred.unfolded.ij1.pdb) and

• complementary (i+1):(j+1) pairing
(6TNA.StrPred.i1j1.pdb and 6TNA.StrPred.unfolded.i1j1.pdb).

3.1.4 Two Beads per Nucleotide DNA Model

In this example we present the implementation of two-bead per nucleotide model for DNA de-
signed by Drukker et al. [7]. In the model each nucleotide is represented by two beads: one in
the center of mass of the phosphate and sugar (the backbone bead) and the second one in the
center of mass of the base. The backbone beads are the same for every nucleotide and the base
beads are nucleotide–type specific. The interactions in the model include the bonded interactions:
backbone–backbone, backbone–base, base–backbone–backbone angle, base–backbone–backbone–
base dihedral and complementary pairing. The complementary pairing potential energy is imple-
mented as a product of an angular term (backbone1–base1–base2) and distance term (base1 and
base2). See Ref. [7] or [15] and Fig. 11b for details.

To run the example enter Examples/Topology/DNA 2Bead directory and run RedMDStream:

RedMDStream protocol.xml

RedMDStream will load 16–base–pair B-DNA structure stored in 3BSE.xml PDBML file and apply
coarse–grained topology described in the topology.xml file. The RedMD SXML 3BSE.sxml file
will be created, containing the coarse–grained structure, along with tabulated potentials and all
interactions, as well as 3BSE.cg.pdb with a coarse–grained structure. To visualize the interactions
additional PDB files are generated, each applying a different bond rule:

• 3BSE.cg.bond.pdb (RNA sequential pseudo–bonds),

• 3BSE.cg.ij.pdb (RNA i:j complementary pairing),

• 3BSE.cg.ij1.pdb (RNA i:(j+1) complementary pairing) and

• 3BSE.cg.i1j1.pdb (RNA (i+1):(j+1) complementary pairing).
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3.2 Protocol XML Files

The protocol XML files contain three examples to test different features of RedMDStream: dis-
tance distribution calculations, MD simulation, and structure prediction. One-bead per nucleotide
RNA representation, with beads centered on phosphorus, is used in the following examples, along
with Leonarski et al. force field. [14]

3.2.1 Distribution calculation

In this example the calculation of distance distribution is presented from both a set of structures
and trajectory.

To run the example enter the Examples/Protocol/Distribution directory and run RedMD-
Stream:

RedMDStream protocol.xml

RedMDStream will calculate the distributions for structures found in the rRNA subdirectory.
First, the distribution of all P–P distances will be calculated, divided by the d0(r) = r2 ref-
erence function and saved to the rRNA.all.txt file. Second, the distribution of the distances
between the first–neighbor pseudo–bond connected beads will be calculated and saved internally
as PneighDistr and in a text file rRNA.neigh.txt. Finally, a similar sequential pseudo–bond
distribution will be calculated for a trajectory in Trajectory. This distribution will be stored in
a file traj.neigh.txt and compared with a saved rRNA distribution using Kolmogorov–Smirnov
test. The distribution-containing text files can be opened with gnuplot or other plotting tool for
inspection.

3.2.2 Simulation

In this example we present the files used to run a short 2 ns simulation of a 35 base-pair RNA helix.
The simulation is carried out using: (a) Langevin dynamics, (b) NVT ensemble with Berendsen
thermostat, (c) Brownian dynamics and (d) NVE ensemble in 310 K.
To run the example enter Examples/Protocol/Simulation directory and run RedMDStream:

RedMDStream protocol.langevin.xml

RedMDStream protocol.berendsen.xml

RedMDStream protocol.brownian.xml

RedMDStream protocol.nve.xml

Simulation trajectory will be saved in a DCD file and RMSD value will be printed as standard
output. One RedMDStream protocol XML file can include simulations in different ensembles.
The four tests mentioned above can be executed with a single file in the same directory as above:

RedMDStream protocol.xml
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A helix35.cg.pdb will be created with a CG representation of the simulated helix. For
visualization in VMD, PyMol or other software this PDB should be loaded as a template prior to
loading the DCD files. DCD files contain only coordinates in a binary format and do not carry
information about atom and residue names and types.

3.2.3 Structure Prediction Simulation

In this example a one-bead per nucleotide structure prediction model for RNA [14] is applied to
predict the structure of a specifier domain of the B. subtilis tyrS T box leader hairpin.
To run the example enter the Examples/Protocol/StrPred directory and run RedMDStream:

RedMDStream protocol.xml

RedMDStream loads the structure, unfolds it to a circular conformation, and simulates it for
20 ns using the Berendsen thermostat in 310 K. The average RMSD over 1000 frames is printed
out to a standard output and a trajectory to the 2KHY.StrPred.dcd file.

3.3 Optimization XML Files

Finally, we provide the optimization XML example files. These examples should be considered
as a toy model. In general, the optimization of the model and force field parameters requires
tedious preparation and testing of parameter ranges, scoring function and protocol. So usage of
high performance computing resources is advised. Here, we provide the examples which can be
calculated on a desktop computer in a reasonable time and provide a basic introduction to the
optimization procedure using RedMDStream. Three example are presented:

1. 1 ns simulation of a folded 35 base-pair A-RNA helix with 4 varying parameters — RMSD
minimization.

2. 100 ps simulation of an unfolded 35 base-pair A-RNA helix with 10 varying parameters —
RMSD minimization.

3. 500 ps simulation of a folded 35 base-pair A-RNA helix with 6 varying parameters — RMSD
and distribution similarity minimization.

The last subsection provides short instructions on how to analyze the output data.

3.3.1 Evolutionary Algorithm

To run the example of the evolutionary algorithm enter the Examples/Optimization/Evo direc-
tory and run RedMDStream:

RedMDStream optimize1.xml

RedMDStream optimize2.xml

RedMDStream optimize3.xml

RedMDStream will perform optimization and generate output files: evo1.csv, evo2.csv, evo3.csv.
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See Sec. 2.4.8 and 2.4.9, as well as an example in Sec. 3.3.6 for instructions how to analyze the
output files.

3.3.2 Particle Swarm Optimization

To run the example of the particle swarm optimization enter the Examples/Optimization/PSO

directory and run RedMDStream:

RedMDStream optimize1.xml

RedMDStream optimize2.xml

RedMDStream optimize3.xml

RedMDStream will perform optimization and generate output files: pso1.csv, pso2.csv and
pso3.csv. See Sec. 2.4.8 and 2.4.9, as well as an example in Sec. 3.3.6 for instructions how to
analyze the output files.

3.3.3 Simplex Optimization

To run the example of the simplex optimization enter the Examples/Optimization/Simplex di-
rectory and run RedMDStream:

RedMDStream optimize1.xml

RedMDStream optimize2.xml

RedMDStream optimize3.xml

RedMDStream will perform optimization and generate output files: simplex1.csv, simplex2.csv
and simplex3.csv. See Sec. 2.4.8 and 2.4.9, as well as an example in Sec. 3.3.6 for instructions
how to analyze the output files.

In addition we provide an example showing how the evolutionary algorithm results stored in
a file
Examples/Optimization/Evo/evo1.csv and Examples/Optimization/Evo/evo2.csv are re-optimized
by the simplex algorithm using the scoring function from example no 1. The evolutionary algo-
rithm example has to be executed before executing the commands below. The example runs as
follows:

RedMDStream optimize1.evo1.xml

RedMDStream optimize1.evo2.xml

RedMDStream will select the best models from the evolutionary algorithm run file, as a starting
point for the simplex method. The output files simplex1.evo1.csv and simplex1.evo2.csv will
be generated.
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3.3.4 Grid Parameter Calculation

To run the particle grid parameter calculation enter the Examples/Optimization/Evo directory
and run RedMDStream:

RedMDStream grid1.xml

RedMDStream performs the optimization and generates the output grid1.csv file. Due to high
cost of increasing the number of dimensions in a grid calculation, only example 1 is suitable for
this type of calculations.

3.3.5 Gradient Calculation

To run the gradient optimization example enter the Examples/Optimization/Evo directory and
run RedMDStream:

RedMDStream gradient1.xml

RedMDStream gradient2.xml

RedMDStream gradient3.xml

RedMDStream performs optimization and generates the following output files: gradient1.csv,
gradient2.csv, gradient3.csv (with the results of simulations used to find gradients), and
gradient1.val.csv,
gradient2.val.csv, gradient3.val.csv (with the actual gradient values). See Sec. 2.4.8 and
2.4.9, as well as an example in Sec. 3.3.6 for instructions how to analyze the output files.

3.3.6 Analysis of subsequent runs

To compare the quality of the optimization methods the output files can be analyzed using the
RedMDStream.optAnalyze tool (see Sec. 2.4.9). To obtain the best potential with the scores in
each method write:

RedMDStream.optAnalyze --fileBest simplex1.csv evo1.csv pso1.xml -o best.csv

The output file best.csv will print the best potential in each file — its parameters, the total
score (with the st. deviation) and the scoring function terms. In a similar way one may obtain
the average score in each file:

RedMDStream.optAnalyze --fileAvg simplex1.csv evo1.csv pso1.xml -o avg.csv

One may also aggregate the three files and use them to find the relationship between the pa-
rameter value and total scoring function:

RedMDStream.optAnalyze --paramFunc simplex1.csv evo1.csv pso1.xml -o func

This command will generate many files, all starting with the func prefix, followed by a dot
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and name of the parameter and the csv extension. For example, in the func.bondR0.csv one
will find the bondR0 values (the distance of bonded interaction), along with the lowest (best) total
score obtained with a particular bondR016 and with any value of other parameters. Note that such
statistics requires a large amount of data and even then the obtained line will be noisy, requiring
smoothing with the spline function. Even though this kind of statistical analysis should be taken
with caution, the general relationship parameter–score can be inferred.

16The parameter range is divided into bins and the smallest (best) score is chosen for the parameters inside each
bin. The number of bins is controlled with the -b <num> option and bin range with the --paramMin=<num> or
--paramMax=<num> options to RedMDStream.optAnalyze
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