
Potential Derived Charges
version 1.0

Users’ Manual

Maciej D lugosz
Joanna Trylska

1

The PDC program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License version 3, as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,

USA.

Copyright (C) 2009: University of Warsaw

CONTENTS 2

Contents

1 Introduction 3

2 Theory 4

3 Supported Platforms 4

4 Requirements 5

5 Compilation 5

6 Input Files 5
6.1 PQR File . 5
6.2 DX Files . 7
6.3 Text Input File . 7

7 Running PDC 8

8 Output Files 9

9 Adding New Effective Charges’ Definitions 9

10 Example 17

11 To-Do List 22

1 INTRODUCTION 3

1 Introduction

PDC (Potential Derived Charges) is a package to describe macromolecules as a limited set of opti-
mized, discrete effective charges immersed in a uniform dielectric, according to concepts that were
previously described [1, 2]. These effective charges are fitted to best reproduce the molecular electro-
static potential calculated from the numerical solution of the Poisson-Boltzmann equation. By using
effective charges one can greatly reduce the computational cost of evaluating the electrostatic forces
and energies in molecular simulations, especially for the systems that are too large to be studied on
the atomic level. Effective charges can be also employed in various coarse-grained approaches.

The PDC source code is written solely in the C language and parallelized with the OpenMP tech-
nology. The code was tested on various Linux/UNIX platforms.

Please direct your comments and questions about PDC to:

mdlugosz@icm.edu.pl

Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw
Żwirki i Wigury 93
02-089 Warsaw
Poland

The source code of the PDC package can be downloaded from:

http://bionano.icm.edu.pl/software

PDC is distributed under the terms of the GNU Public Licence. A copy of the GPL is provided
with the PDC source code and is also available at http://www.gpl.org.

2 THEORY 4

2 Theory

The effective charges are derived by fitting the electrostatic potential resulting from the Debye-Hückel
approximation to the external molecular potential obtained as a numerical solution of the Poisson-
Boltzmann equation. Fitting is performed by solving a linear system of equations:

A~q = ~b

with:

Aij =
∫

Ω
d3~r e

−κ|~r−~ri|

ε|~r−~ri|
e−κ|~r−~rj |

ε|~r−~rj |

~q = (q1, ..., qn)

~b = (b1, ..., bn)

bi =
∫

Ω
d3~r e

−κ|~r−~ri|

ε|~r−~ri| ΦPB(~r)

where Ω denotes the volume outside the molecule where the electrostatic potential is fitted, ΦPB(~r) is
the value of the electrostatic potential at a given point ~r obtained by numerically solving the Poisson-
Boltzmann equation, ε is the dielectric constant of the solvent, κ is the inverse of the Debye length
and ~q is the vector of effective charges.

To maintain physical magnitudes of effective charges, a penalty function is used that modifies the
diagonal elements of the A matrix as follows:

Aii = Aii(1 + δ)

where δ is a restraint value (δ > 0.0).

The accuracy of the fit is defined as:

χ = 1−
R
Ω d

3~r|ΦPB(~r)−
P
qj
e
−κ|~r−~rj |
ε|~r−~rj |

|2R
d3~r|ΦPB(~r)|2

Effective charges are positioned on particular atoms of the input molecule (for example on the NZ atom
of LYS, OD1 and OD2 atoms of ASP and OE1 and OE2 atoms of GLU). However, different definitions of
effective charges are possible that require only small modifications of the PDC source code, making the
application of PDC to nonstandard systems straightforward. Modifications of the source code needed
to introduce new definitions of effective charges are described in Section 9.

3 Supported Platforms

PDC is distributed as a tar.gz archive containing the C source of the package. Additionally, the PDC
archive contains the documentation and examples. Under Linux/UNIX systems a standard make tool
is needed to build the PDC binary from the source. PDC was developed and tested on Linux/UNIX
platforms. However, PDC should also work on other different platforms. It is possible to run PDC, for
example, under MS Windows either directly or using the Cygwin environment.

4 REQUIREMENTS 5

4 Requirements

Linear Algebra Pack (LAPACK http://www.netlib.org/lapack/) is required to compile and run
PDC.
A compiler with an OpenMP implementation is needed if the user plans to run PDC in parallel.

5 Compilation

After downloading, the PDC.tar.gz archive should be unpacked

gzip -d PDC.tar.gz

tar -xvf PDC.tar

as a result the PDC directory is created. Two Makefiles are provided in the PDC/src directory:
Makefile.gcc and Makefile.intel The user should choose one of the Makefiles (depending on
the user’s compiler, i.e. GNU C Compiler or Intel C Compiler), verify that the path to a compiler is
correct, and rename (or copy) the chosen file to Makefile. Next, from the src directory the

make all

and
make install

commands should be issued. As a result, the PDC binary, pdc will be placed in the PDC/bin di-
rectory.

6 Input Files

Four files are needed to run PDC: a text input file, a PQR file containing the positions, partial charges
and radii of all atoms of the studied molecule, a DX-formatted file with the electrostatic potential of
the molecule, and a DX-formatted file containing the definition of the volume where the electrostatic
potential is to be fitted. Both DX files can be generated as an output from the APBS [3] package.

6.1 PQR File

PQR format resembles the PDB format, however the PQR files are rather loosely formated. PDC reads
PQR files on a per-line basis using the following format:

Field name Atom number Atom name Residue name Residue number x y z Charge Radius

with the whitespace being the delimiter. PDC ignores the lines that do not begin with the ATOM

field. An example of the PQR file is given below:

6 INPUT FILES 6

ATOM 1 N NTR 1 20.822 -31.315 -30.260 0.1305 1.550
ATOM 2 H1 NTR 1 21.587 -30.672 -30.405 0.2083 1.200
ATOM 3 H2 NTR 1 20.248 -31.331 -31.091 0.2083 1.200
ATOM 4 H3 NTR 1 21.190 -32.177 -29.884 0.2083 1.200
ATOM 5 CA ARG 1 19.956 -30.765 -29.199 -0.0223 1.700
ATOM 6 HA ARG 1 18.964 -30.601 -29.621 0.1242 1.200
ATOM 7 CB ARG 1 19.822 -31.688 -27.963 0.0118 1.700
ATOM 8 HB2 ARG 1 19.036 -31.275 -27.330 0.0226 1.200
ATOM 9 HB3 ARG 1 19.520 -32.672 -28.321 0.0226 1.200
ATOM 10 CG ARG 1 21.103 -31.813 -27.161 0.0236 1.700
ATOM 11 HG2 ARG 1 21.862 -32.219 -27.830 0.0309 1.200
ATOM 12 HG3 ARG 1 21.390 -30.807 -26.856 0.0309 1.200
ATOM 13 CD ARG 1 20.980 -32.725 -25.898 0.0935 1.700
ATOM 14 HD2 ARG 1 21.954 -32.789 -25.414 0.0527 1.200
ATOM 15 HD3 ARG 1 20.262 -32.279 -25.210 0.0527 1.200
ATOM 16 NE ARG 1 20.535 -34.070 -26.229 -0.5650 1.550
ATOM 17 HE ARG 1 19.559 -34.281 -26.074 0.3592 1.200
ATOM 18 CZ ARG 1 21.331 -35.039 -26.638 0.8281 1.700
ATOM 19 NH1 ARG 1 22.626 -34.847 -26.837 -0.8693 1.550
ATOM 20 HH11 ARG 1 23.029 -33.935 -26.674 0.4494 1.200
ATOM 21 HH12 ARG 1 23.205 -35.613 -27.151 0.4494 1.200
ATOM 22 NH2 ARG 1 20.810 -36.211 -26.935 -0.8693 1.550
ATOM 23 HH21 ARG 1 19.814 -36.354 -26.847 0.4494 1.200
ATOM 24 HH22 ARG 1 21.409 -36.961 -27.249 0.4494 1.200
ATOM 25 C ARG 1 20.471 -29.388 -28.796 0.7214 1.700
ATOM 26 O ARG 1 21.681 -29.155 -28.776 -0.6013 1.500
ATOM 888 N ALA 58 13.551 -36.873 -30.609 -0.3821 1.550
ATOM 889 H ALA 58 13.600 -36.413 -29.711 0.2681 1.200
ATOM 890 CA ALA 58 12.251 -37.347 -31.074 -0.1747 1.700
ATOM 891 HA ALA 58 12.386 -38.302 -31.582 0.1067 1.200
ATOM 892 CB ALA 58 11.275 -37.555 -29.869 -0.2093 1.700
ATOM 893 HB1 ALA 58 11.123 -36.606 -29.356 0.0764 1.200
ATOM 894 HB2 ALA 58 10.318 -37.926 -30.236 0.0764 1.200
ATOM 895 HB3 ALA 58 11.703 -38.278 -29.175 0.0764 1.200
ATOM 896 C CTR 58 11.656 -36.367 -32.099 0.7731 1.700
ATOM 897 O CTR 58 12.129 -35.223 -32.306 -0.8055 1.500
ATOM 898 OXT CTR 58 10.666 -36.716 -32.749 -0.8055 1.500

6 INPUT FILES 7

6.2 DX Files

PDC reads electrostatic potentials and volumes, given as discretized scalar data, using the OpenDX format
(http://www.opendx.org). It also outputs discretized data using this format:

comments
object 1 class gridpositions counts nx ny nz
origin xmin ymin zmin
delta hx 0.0 0.0
0.0 hy 0.0
delta 0.0 0.0 hz
object 2 class gridconnections counts nx ny nz
object 3 class array type double rank 0 times n data follows
u(0,0,0) u(0,0,1) u(0,0,2)
u(0,0,nz-3) u(0,0,nz-2) u(0,0,nz-1)
u(0,1,0) u(0,1,1) u(0,1,2)
...
u(0,1,nz-3) u(0,1,nz-2) u(0,1,nz-1)
...
u(0,ny-1,nz-3) u(0,ny-1,nz-2) u(0,ny-1,nz-1)
u(1,0,0) u(1,0,1) u(1,0,2)
...
attribute "dep" string "positions"
object "regular positions regular connections" class field
component "positions" value 1
component "connections" value 2
component "data" value 3

where the variables are:

comments - any number of comment lines, each line starting with the # symbol
nx ny nz - the number of grid points in the x-, y-, and z-directions
xmin ymin zmin - the coordinates of the grid lower corner
hx hy hz - the grid spacings in the x-, y-, and z-directions
n - the total number of grid points
u(*,*,*) - the data values, ordered with the z-index increasing most quickly, followed by the y-index, and
then the x-index

PDC reads DX files created with the APBS [3] package (http://www.poissonboltzmann.org/apbs/). Both DX
files needed to run PDC must contain the same number of points. Moreover, grid sizes used during APBS
computations, their spacings, and origins should be the same. The volume file should contain only 1s (in the
region of fitting) and 0s (elsewhere). The volume files can be easily created with the APBS package (for
details see Section 10).

6.3 Text Input File

The text input file contains such variables as the temperature, the solvent dielectric constant, ionic strength,
as well as the number of processors to be used in the calculation (if OpenMP is supported). This text file

7 RUNNING PDC 8

should be created adhering to the following format:

keyword value

The currently recognized keywords are:

diel - the dielectric constant of the solvent
temp - the temperature in kelvins
debye - the Debye length in Å
penalty - δ restraint value
points - this keyword allows the user to change the spacing (i.e., the resolution) of the input DX files, if
points is set to 1, the original spacing is used; bigger values increase the spacing by points (hence decrease
the resolution) - consequently the number of points at which potentials are to be evaluated/compared is
smaller
CPU - the number of CPUs to be used for the calculation

An example of the PDC input file is given below (lines that do not begin with a recognizable keyword are
ignored):

an exemplary PDC input file

diel 78.54
temp 298.15
debye 7.8566
penalty 0.05
points 1
CPU 2

solvent dielectric constant
Temperature
Debye length
restraint
number of points to skip in each direction (x,y,z)
number of CPUs

7 Running PDC

To run PDC the following command should be used:

pdc <txt input file> <pqr file> <dx potential file> <dx volume file>

8 OUTPUT FILES 9

8 Output Files

As a result of a PDC run, four files are created:
effective charges.dat - a text file with the values of effective charges
effective charges.pqr - a PQR file containing only charged atoms (i.e. effective charges) of the input
molecule
potential fit.dx - the electrostatic potential generated by the optimized effective charges in the volume
specified by the user
potential volume.dx - input electrostatic potential file in the volume specified by the user

The accuracy of the fit is printed to the standard output.

9 Adding New Effective Charges’ Definitions

Currently, only the positions of protein effective charges are defined in the PDC source code (see the table
given at the end of this section). However, adding a new definition of an effective charge or modifying the
existing one is straightforward and does not require any programming skills. To add new effective charges’
definitions the user should modify two blocks, denoted in the source file pdc.c as A and B.

The two fragments of the code given below (blocks A and B) define the effective charges positioned on
the NZ atoms of LYS residues and the NH1 atoms of ARG residues:

/* BLOCK A: COUNTING EFFECTIVE CHARGES */

k = 0;

for (k = 0; k < PQR_N_atoms; k++) {
clean_name(resname , 100);
strcpy(resname , PQR_residue_name[k]);

clean_name(atomname , 100);
strcpy(atomname , PQR_atom_name[k]);

if (resname [0] == ’L’ &&
resname [1] == ’Y’ &&
resname [2] == ’S’ &&
atomname [0] == ’N’ &&
atomname [1] == ’Z’) {
N_eff += 1;

} else if (resname [0] == ’A’ &&
resname [1] == ’R’ &&
resname [2] == ’G’ &&
atomname [0] == ’N’ &&
atomname [1] == ’H’ &&
atomname [2] == ’1’) {

N_eff += 1;
}

9 ADDING NEW EFFECTIVE CHARGES’ DEFINITIONS 10

....

}

fprintf(stderr , "\nNUMBER OF EFFECTIVE CHARGES: %d\n", N_eff);

/* END OF BLOCK A: COUNTING EFFECTIVE CHARGES */

9 ADDING NEW EFFECTIVE CHARGES’ DEFINITIONS 11

/* BLOCK B: EFFECTIVE CHARGES DEFINITIONS */

i = 0;

for (k = 0; k < PQR_N_atoms; k++) {
clean_name(resname , 100);
strcpy(resname , PQR_residue_name[k]);

clean_name(atomname , 100);
strcpy(atomname , PQR_atom_name[k]);

if (resname [0] == ’L’ &&
resname [1] == ’Y’ &&
resname [2] == ’S’ &&
atomname [0] == ’N’ &&
atomname [1] == ’Z’) {
pos_x[i] = PQR_atom_x[k];
pos_y[i] = PQR_atom_y[k];
pos_z[i] = PQR_atom_z[k];
tot_q[i] = 0.0;

EFF_atom_x[i] = pos_x[i];
EFF_atom_y[i] = pos_y[i];
EFF_atom_z[i] = pos_z[i];
EFF_atom_radius[i] = PQR_atom_radius[k];
EFF_atom_id[i] = PQR_atom_id[k];
EFF_residue_id[i] = PQR_residue_id[k];
strcpy(EFF_atom_name[i], PQR_atom_name[k]);
strcpy(EFF_residue_name[i], PQR_residue_name[k]);
i = i + 1;

} else if (resname [0] == ’A’ &&
resname [1] == ’R’ &&
resname [2] == ’G’ &&
atomname [0] == ’N’ &&
atomname [1] == ’H’ &&
atomname [2] == ’1’) {

pos_x[i] = PQR_atom_x[k];
pos_y[i] = PQR_atom_y[k];
pos_z[i] = PQR_atom_z[k];
tot_q[i] = 0.0;

EFF_atom_x[i] = pos_x[i];
EFF_atom_y[i] = pos_y[i];
EFF_atom_z[i] = pos_z[i];
EFF_atom_radius[i] = PQR_atom_radius[k];

9 ADDING NEW EFFECTIVE CHARGES’ DEFINITIONS 12

EFF_atom_id[i] = PQR_atom_id[k];
EFF_residue_id[i] = PQR_residue_id[k];
strcpy(EFF_atom_name[i], PQR_atom_name[k]);
strcpy(EFF_residue_name[i], PQR_residue_name[k]);
i = i + 1;

}
....

}

free(q_x);
free(q_y);
free(q_z);
free(q);

/* END OF BLOCK B: EFFECTIVE CHARGES DEFINITIONS */

9 ADDING NEW EFFECTIVE CHARGES’ DEFINITIONS 13

Let us assume that the user needs to define an effective charge positioned on the YYY atom of the XXX
residue. For this purpose the blocks A and B of the pdc.c source code should be modified as follows (compare
with the code fragment presented above):

/* BLOCK A: COUNTING EFFECTIVE CHARGES */

k = 0;

for (k = 0; k < PQR_N_atoms; k++) {
clean_name(resname , 100);
strcpy(resname , PQR_residue_name[k]);

clean_name(atomname , 100);
strcpy(atomname , PQR_atom_name[k]);

if (resname [0] == ’L’ &&
resname [1] == ’Y’ &&
resname [2] == ’S’ &&
atomname [0] == ’N’ &&
atomname [1] == ’Z’) {
N_eff += 1;

} else if (resname [0] == ’A’ &&
resname [1] == ’R’ &&
resname [2] == ’G’ &&
atomname [0] == ’N’ &&
atomname [1] == ’H’ &&
atomname [2] == ’1’) {

N_eff += 1;
} else if (resname [0] == ’X’ &&

resname [1] == ’X’ &&
resname [2] == ’X’ &&
atomname [0] == ’Y’ &&
atomname [1] == ’Y’ &&
atomname [2] == ’Y’) {

N_eff += 1;
}

....

}

fprintf(stderr , "\nNUMBER OF EFFECTIVE CHARGES: %d\n", N_eff);

/* END OF BLOCK A: COUNTING EFFECTIVE CHARGES */

9 ADDING NEW EFFECTIVE CHARGES’ DEFINITIONS 14

/* BLOCK B: EFFECTIVE CHARGES DEFINITIONS */

i = 0;

for (k = 0; k < PQR_N_atoms; k++) {
clean_name(resname , 100);
strcpy(resname , PQR_residue_name[k]);

clean_name(atomname , 100);
strcpy(atomname , PQR_atom_name[k]);

if (resname [0] == ’L’ &&
resname [1] == ’Y’ &&
resname [2] == ’S’ &&
atomname [0] == ’N’ &&
atomname [1] == ’Z’) {
pos_x[i] = PQR_atom_x[k];
pos_y[i] = PQR_atom_y[k];
pos_z[i] = PQR_atom_z[k];
tot_q[i] = 0.0;

EFF_atom_x[i] = pos_x[i];
EFF_atom_y[i] = pos_y[i];
EFF_atom_z[i] = pos_z[i];
EFF_atom_radius[i] = PQR_atom_radius[k];
EFF_atom_id[i] = PQR_atom_id[k];
EFF_residue_id[i] = PQR_residue_id[k];
strcpy(EFF_atom_name[i], PQR_atom_name[k]);
strcpy(EFF_residue_name[i], PQR_residue_name[k]);
i = i + 1;

} else if (resname [0] == ’A’ &&
resname [1] == ’R’ &&
resname [2] == ’G’ &&
atomname [0] == ’N’ &&
atomname [1] == ’H’ &&
atomname [2] == ’1’) {

pos_x[i] = PQR_atom_x[k];
pos_y[i] = PQR_atom_y[k];
pos_z[i] = PQR_atom_z[k];
tot_q[i] = 0.0;

EFF_atom_x[i] = pos_x[i];
EFF_atom_y[i] = pos_y[i];
EFF_atom_z[i] = pos_z[i];
EFF_atom_radius[i] = PQR_atom_radius[k];

9 ADDING NEW EFFECTIVE CHARGES’ DEFINITIONS 15

EFF_atom_id[i] = PQR_atom_id[k];
EFF_residue_id[i] = PQR_residue_id[k];
strcpy(EFF_atom_name[i], PQR_atom_name[k]);
strcpy(EFF_residue_name[i], PQR_residue_name[k]);
i = i + 1;

} else if (resname [0] == ’X’ &&
resname [1] == ’X’ &&
resname [2] == ’X’ &&
atomname [0] == ’Y’ &&
atomname [1] == ’Y’ &&
atomname [2] == ’Y’) {

pos_x[i] = PQR_atom_x[k];
pos_y[i] = PQR_atom_y[k];
pos_z[i] = PQR_atom_z[k];
tot_q[i] = 0.0;

EFF_atom_x[i] = pos_x[i];
EFF_atom_y[i] = pos_y[i];
EFF_atom_z[i] = pos_z[i];
EFF_atom_radius[i] = PQR_atom_radius[k];
EFF_atom_id[i] = PQR_atom_id[k];
EFF_residue_id[i] = PQR_residue_id[k];
strcpy(EFF_atom_name[i], PQR_atom_name[k]);
strcpy(EFF_residue_name[i], PQR_residue_name[k]);
i = i + 1;

}
....

}

free(q_x);
free(q_y);
free(q_z);
free(q);

/* END OF BLOCK B: EFFECTIVE CHARGES DEFINITIONS */

9 ADDING NEW EFFECTIVE CHARGES’ DEFINITIONS 16

There is an additional else if(){} statement in both blocks. This new statement differs from the other
else if(){} statements only by the condition enclosed within parentheses specifying the name of the residue
and the name of an atom belonging to this residue. If the specified atom of the specified residue is present in
the input PQR file, an effective charge will be placed at its position.

Currently implemented effective charges definitions

LYS NZ
ARG NH1
ARG NH2
ASP OD1
ASP OD2
GLU OE1
GLU OE2
ASN OD1
ASN CG
GLN CD
GLN OE1
TYR OH
SER OG
THR OG1
MET SD

HIS(E,D) ND
HIS(E,D) NE

NTR N
CTR O (OT,OXT)

MG MG
GDP P
GTP P

10 EXAMPLE 17

10 Example

In this example we compute the effective charges for the bovine pancreatic trypsin inhibitor (BPTI protein).
We fit the electrostatic potential in the 3Å thick skin around the molecule. The total number of BPTI atoms is
898. The number of effective charges needed to fit the electrostatic potential of this protein with the accuracy
greater than 0.99 is only 44.

All files needed to run this example are provided in the PDC/example directory.

First, using APBS, we compute the electrostatic potential generated by BPTI at 150mM ionic strength.
We run APBS with the following input file (PDC/example/apbs inputs/input):

read
mol pqr bpti.pqr # Read molecule 1

end

A POTENTIAL
elec name A

mg-auto
dime 129 129 129
cglen 175 175 175
fglen 70 70 70
fgcent mol 1
cgcent mol 1
mol 1
lpbe
bcfl mdh
ion charge 1 conc 0.150 radius 2.0
ion charge -1 conc 0.150 radius 2.0
pdie 4.0
sdie 78.54
chgm spl2
srfm mol
srad 0.0
swin 0.3
sdens 10.0
temp 298.15
calcenergy total
calcforce no
write pot dx apbs_potential

end

The resulting electrostatic potential is written to the apbs potential.dx file.

10 EXAMPLE 18

Second, we need to create a volume file defining the region where we fit the electrostatic potential. Two
APBS runs are needed for this purpose. The first run creates the file vol A.dx describing the van der Waals
surface of BPTI, inflated by 5Å (PDC/example/apbs inputs/vol A.input):

read
mol pqr bpti.pqr # Read molecule 1

end

A POTENTIAL
elec name A

mg-auto
dime 129 129 129
cglen 175 175 175
fglen 70 70 70
fgcent mol 1
cgcent mol 1
mol 1
lpbe
bcfl mdh
ion charge 1 conc 0.150 radius 5.0
ion charge -1 conc 0.150 radius 5.0
pdie 4.0
sdie 78.54
chgm spl2
srfm mol
srad 0.0
swin 0.3
sdens 10.0
temp 298.15
calcenergy no
calcforce no
write kappa dx vol_A

end

10 EXAMPLE 19

The second run creates the file vol B.dx describing the van der Waals surface of BPTI, inflated by 8Å
(PDC/example/apbs inputs/vol B.input):

read
mol pqr bpti.pqr # Read molecule 1

end

A POTENTIAL
elec name A

mg-auto
dime 129 129 129
cglen 175 175 175
fglen 70 70 70
fgcent mol 1
cgcent mol 1
mol 1
lpbe
bcfl mdh
ion charge 1 conc 0.150 radius 8.0
ion charge -1 conc 0.150 radius 8.0
pdie 4.0
sdie 78.54
chgm spl2
srfm mol
srad 0.0
swin 0.3
sdens 10.0
temp 298.15
calcenergy no
calcforce no
write kappa dx vol_B

end

10 EXAMPLE 20

Next, we need to subtract the vol A.dx and vol B.dx files by applying the APBS dxmath utility and
using the following input (PDC/example/apbs inputs/dxmath.inp):

vol_A.dx
vol_B.dx -
volume.dx =

The resulting file, volume.dx, contains 1s in the region between 5Å and 8Å from the protein’s van der
Waals surface and 0s elsewhere. The electrostatic potential will be fitted in this region as shown in the fol-
lowing figure.

Finally, we are ready to run PDC using the following input (PDC/example/input.txt):

diel 78.54
temp 298.15
debye 7.8566
penalty 0.05
points 1
CPU 2

10 EXAMPLE 21

After issuing the command:

pdc input.txt bpti.pqr apbs potential.dx volume.dx

the following information is printed to the standard output:

* pdc 1.0 *

OpenMP is supported

CONVERSION FACTOR: 560.354610
SOLVENT DIELECTRIC: 78.540000
TEMPERATURE: 298.150000
DEBYE LENGTH: 0.127282
RESTRAINT: 0.050000
NUMBER OF CPUs: 2

READ 898 LINES

NUMBER OF EFFECTIVE CHARGES: 44

DX DATA OK

RESOLUTION:
0.546875 0.000000 0.000000
0.000000 0.546875 0.000000
0.000000 0.000000 0.546875

Non -zero grid points 114813 out of total 2146689

FILLING [A] MATRIX

FILLING [b] VECTOR

SOLVING [A][x]=[b]

COMPUTING ACCURACY

FIT QUALITY: 0.9934160941

Time to fill A matrix = 18 seconds

and files: effective charges.dat, effective charges.pqr, potential fit.dx, potential volume.dx
are created.

11 TO-DO LIST 22

The effective charges.pqr file contains optimized effective charges.
Two DX files, potential fit.dx and potential volume.dx can be visualized using for example the VMD
package (http://www.ks.uiuc.edu/Research/vmd/) or UCSF Chimera http://www.cgl.ucsf.edu/chimera.

11 To-Do List

A simpler way to define effective charges, without the need to modify the PDC source code.
This feature will be added soon.

REFERENCES 23

References

[1] R. R. Gabdoulline and R. C. Wade. Effective charges for macromolecules in solvent. J. Phys. Chem.,
100:3868–3878, 1996.

[2] D.A. Beard and T. Schlick. Modeling salt-mediated electrostatics of macromolecules: The discrete surface
charge optimization algorithm and its application to the nucleosome. Biopolymers, 58:106–115, 2001.

[3] N.A. Baker, J.D Sept, S. Joseph, M.J Holst, and J.A. McCammon. Electrostatics of nanosystems: appli-
cation to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA, 98:10037–10041, 2001.

	Introduction
	Theory
	Supported Platforms
	Requirements
	Compilation
	Input Files
	PQR File
	DX Files
	Text Input File

	Running PDC
	Output Files
	Adding New Effective Charges' Definitions
	Example
	To-Do List

