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The ION program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License version 2, as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

Copyright (C) 2008 - 2013: University of Warsaw

Work on the ION package was supported by the Ministry of Science and Higher Education (grant no
N N301 245236).
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1 Introduction

Many biological processes are driven by electrostatic interactions between molecules. Therefore, the
knowledge of the electrostatic potential that is generated by biomolecules is crucial for determining their
physicochemical properties and possible interactions with other biomolecules. The distribution of the
electrostatic potential around a molecule depends on its chemical composition and three-dimensional
structure, as well as on its environment. An important component of the environment are the ions.
Especially for highly charged molecules, such as nucleic acids, the distribution of counter-ions close to
the surface is crucial for their functioning.

We present the ION software that determines the distribution of ions around biomolecules. The
molecules and ions are modeled explicitly and represented by atomic partial charges and radii. The
solvent is modeled implicitly as a continuum medium characterized by a dielectric constant (assumed
80 for water). The volume occupied by the molecule and ions is also characterized by a dielectric
constant which is usually in the range 1–12.

The distribution of the electrostatic potential Ψ is a solution of the Dirichlet problem for the Poisson
equation:

−∇(ε∇Ψ) = 4πρ, in Ω

Ψ = F, on ∂Ω

where ε is dielectric constant, ρ the distribution of the electric charge in the system, F the boundary
condition and Ω is a three-dimensional finite box defining the area in which we calculate the solution.
For molecules of irregular shapes the analytical solution of the Poisson equation is not known and
numerical methods need to be applied.

In the Poisson-Boltzmann model the finite size of ions is ignored, and their electric charge is
represented in the water environment with the Boltzmann distribution. For many applications such
approximation is acceptable and found in many electrostatic software packages. However, for highly
charged systems, such as nucleic acids, a more detailed description of ionic environment accounting
for ion sizes is often needed. In order to account for the ions of finite size one can solve the Poisson
equation with explicit treatment of ions. The solution has to be repeated for various ion configurations
determined for example by applying the Monte-Carlo (MC) dynamics.
With the ION software one can perform the MC dynamics accounting for the finite size of ions. ION
uses the PETSc package (http://www.mcs.anl.gov/petsc/petsc-as/) for calculating the solution of the
Dirichlet problem for the Poisson equation in every iteration of the MC. Also, ION is fully parallelized
with the MPI technology.
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2 Software

In this section we describe how to install and use the ION software.

2.1 Requirements

ION is designated for Linux platforms and is distributed as a source code written in the C language.
Therefore, a C compiler is required for installation. The compilation was tested with the GNU Compiler
Collection (gcc) ver. 4.6.3. ION also uses the PETSc package (the recommended version is 3.3-p6)
with Message Passing Interface (MPI) (see: http://www.mcs.anl.gov/petsc/petsc-as/). To install ION
and PETSc the root privileges are not required.

2.2 Installation of PETSc

One should download the PETSc sources from http://www.mcs.anl.gov/petsc/petsc-as/ (in this ex-
ample we use PETSc 3.3-p6). The file named petsc-3.3-p6.tar.gz should be unpacked in the
user’s directory:

tar -xzf petsc-3.3-p6.tar.gz

The above command should create the petsc-3.3-p4 directory. For configuration one can use the
scripts in the petsc-3.3-p6/config directory. For AMD 64-bit processor machines select the script
arch-gcc64-real.py and in the petsc-3.3-p6 directory type:

./config/examples/basic/arch-gcc64-real.py

For 32-bit processor machines select the script arch-gcc-real.py and in the petsc-3.3-p6 directory
type:

./config/examples/basic/arch-gcc-real.py

More configuration scripts can be found in ./config/examples/basic/ or in ./config/examples/.
One can obtain information on machine architecture by the arch command, x86 indicates a 32-bit
machine and x86 64 indicates the AMD 64-bit processor. If the configuration ends successfully then
one should set the environmental variables PETSC_DIR and PETSC_ARCH. The configuration script will
provide this path for the selected architecture.
We recommend to add the following lines:

setenv PETSC_DIR full_path_to_petsc_instalation_directory

setenv PETSC_ARCH name_of_petsc_instalation

if you use csh or tcsh

or

export PETSC_DIR=full_path_to_petsc_instalation_directory

export PETSC_ARCH=name_of_petsc_instalation

if you use bash, sh or rc in the file .bashrc, .profile or .cshrc (depending on the type of the shell).

In order to compile the sources type:

make all test
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2.3 ION Download

The source code and the manual are available from https://bionano.cent.uw.edu.pl/Software. After
downloading unpack the sources:

tar -xvf ION.tar.gz

The above command should create the ION directory.

2.4 Code organization

The code is located in the top-level directory ION/ with the following subdirectories:

src - contains the source codes and the header file

bin - a directory to place binary files

manual - contains the manual

example - contains exemplary input files

2.5 Installation

To compile the sources and create the executable file you must use the makefile from the ION/ directory.
Just type in the terminal:

make ION

If everything was successful, an executable file ION in the bin/ subdirectory should be created.

2.6 Usage

The easiest way to run the ION program is by using the makefile in the ION/ directory (the same file
that was used in order to compile the sources). In this file you can find the following lines:

runION:

-@${MPIEXEC} -np 2 ./bin/ION example/in.txt;

The second line starts with a variable that comes from the PETSc package and runs MPI processes (if
you are not familiar with PETSc and with the makefile syntax do not change this). The -np option
indicates the number of processors destined to run a job (in the above case it is 2). The ./bin/ION

executes the file ION from the bin/ directory. The argument example/in.txt names the control file
which contains user-defined parameters for the simulation (see 2.7).
To run the simulation one should use:

make runION

For sequential processing one should use:

./bin/ION example/in.txt;
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2.7 Control file and keywords

ION needs as an input parameter the name of an input control file. It is an ascii file that contains
all parameters needed to define the simulation. Each line in the control file, except the comments, is
constructed as follows:

keyword value

and is terminated with the EOL sign. If the first word in the line does not correspond to available
keywords this line is treated as misspelled and the program stops. Otherwise, the second word is read
as the parameter’s value. Any word following the keyword and the value in the same line is treated as
misspelled and the program stops with an error. Every position starting with ’#’ or ’%’ is treated as a
comment and ignored.

All variables are implicitly set to zero, a default modifier indicates that a variable has another begin
value. Description of the box:
lx value - the length of the box in the first direction (in Å)
ly value - the length of the box in the second direction (in Å)
lz value - the length of the box in the third direction (in Å)
directionx number - the number of discretization steps in the first direction (integer)
directiony number - the number of discretization steps in the second direction (integer)
directionz number - the number of discretization steps in the third direction (integer)

Free ions added by ION in the solvent (next to the ions read from the PQR file – see 3.1):
ionk name - the name of the k-th type of the ion (we recommend to use the element’s chemical
capitalized names such as NA, MG, CL etc. consistently with the names of ions that may appear in
the PQR file, compare with the section 3.1
ionkn number - the number of k-th type ions (integer)
ionkr value - the radius of the k-th type ion (in Å)
ionkdr value - the ∆Rk of the k-th type ion (in Å)
ionkw value - the wk of the k-th type ion (in Å)
ionkch value - the charge of the k-th type ion (in e)
Note: For k should be used consecutive integers starting with 1.

MC parameters:
temperature value - temperature of the system in K (default 300 K)
niterations number - the number of iterations of the Monte Carlo algorithm (integer)
ionsDelta value - ion’s displacement in Å with random distance between 0 and value (default 1.0Å)
ionsOneByOne yes/no - if this parameter is set to yes the ions are moved in a fixed sequence during
the MC algorithm. In the case of no – in random order by the shuffled cyclic method (default is no)
nIonsToMove number/all - the number of ions moved in one iteration of the Monte Carlo algorithm
in a fixed or random sequence depend on ionsOneByOne parameter. If this parameter is set to all
then all ions are displaced (default 1)
enableSelfEnergy yes/no - if the value of this parameter is yes the self energy of charges is eliminated
from the total energy in the MC algorithm. Otherwise, (no) the self energy is not calculated (default yes)

Dielectric constant:
solventEps value - the dielectric constant of the solvent (default 80.0)
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moleculeEps value - the dielectric constant inside the molecule and ions (default 4.0)
wA value - the width (see w in Fig1) of the intermediate region between the areas with different
dielectric constants for atoms of the molecule (default 1 Å)
wI value - the width (see w in Fig1) of the intermediate region between the areas with different dielec-
tric constants used for ions with no ionkw specified (default 1 Å)
w deltaR ion value - the value of the ∆R parameter (Fig. 1) used for ions with no ionkdr specified
(default 1.0 Å)
w deltaR atom value - the value of the ∆R parameter (Fig. 1) for atoms of the molecule (default
1.0 Å)

Files:
inputMolecule name - the name of the input file of the molecule (in the PQR format)
outputStatistics name - the name of the output file with statistics from the MC algorithm
outputStatesXYZ name - the name of the output file in the XYZ format with the positions of ions
in the solvent in selected MC steps as defined by the outputStates freq parameter
outputStatesPQR name - the name of the output file in the PQR format with the positions of ions
in the solvent in selected MC steps as defined by the outputStates freq parameter
outputStates freq number - how frequently to write the positions of ions in the solvent to the PQR
file and XYZ file (default 0 – not outputted)
iondensity name - the root name of the files with average positions of different ions during the MC
algorithm (in the DX format)
potential name - the name of the output file in the DX format with average potential calculated during
the MC algorithm
restartCoords name - the name of the restart file (in the PQR format) with the positions of ions in
the solvent. When restarted the program ignores the ions from the PQR file and defined by the ionk
parameter

Others:
We discretize the position of the mobile particle (ion) with a fine resolution, e.g (Mnx, Mny, Mnz).
Mnx value - subdivision of the unit cell for the self-energy computation in the first direction. Default:
10.
Mny value - subdivision of the unit cell for the self-energy computation in the second direction. De-
fault: 10.
Mnz value - subdivision of the unit cell for the self-energy computation in the third direction. Default:
10.
qrSource mixed/pqr/input - the source of the radius and charge for ions. Default: mixed.
seed number - the seed for the random number generator. If omitted the seed is based on the present
time.
timing yes/no - estimates the time needed to finish the simulation. If this option is turned on, the
program returns the estimated time to the end of the calculation after the first step of the MC algo-
rithm.
rtol value - tolerance for solving the Poisson equation (see section 3.4, default 0.00001)
extraVIons value - the minimal separation between ions in the solvent (in Å). This separation is mea-
sured as the distance between the centers of ions minus the sum of their radii (default 1.76 Å)
extraVAtom value - the same as above but between the atoms in the molecule and ions in the solvent
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(default 1.76 Å)
distMol value - if the distance (in Å) between an ion from the PQR file and the nearest atom in the
molecule is smaller than this value, this ion is treated as a part of the molecule (default 3.0 Å)
distSolv value - if the distance (in Å) between an ion from the PQR file and the nearest atom in the
molecule is greater than this value, this ion is treated as a ”free-ion” (default 3.0 Å)
centerMolecule yes/no - if this parameter is set to yes the molecule is centered in the box Ω (see
3.1, default yes)
minDistIonFromBorder value - the minimal distance of ions from the border of the box. If the
specified value is smaller than wk + ∆Rk then the default of wk + ∆Rk is enforced (in Å)

2.8 Example control file

######################################

# perform calculation for a molecule #

# in the trna.pqr file #

# PDB code: 1GIX #

######################################

inputMolecule example/trna.pqr

######################################

# box 90A x 100A x 110A #

# Note: The molecule is centered #

# in the box #

######################################

lx 90.0

ly 100.0

lz 110.0

######################################

# use a 1A discretization step #

######################################

directionx 90

directiony 100

directionz 110

######################################

# add 50 magnesium ions with #

# radii of 1A and charges of +2e #

######################################

ion1 MG

ion1n 50

ion1r 0.72

ion1ch 2.0



2 SOFTWARE 9

######################################

# add 50 sodium ions with #

# radii of 1A and charges of +1e #

######################################

ion2 NA

ion2n 50

ion2r 0.98

ion2ch 1.0

######################################

# and add 76 chlorine ions with #

# radii of 2A and charges of -1e #

######################################

ion3 CL

ion3n 76

ion3r 1.81

ion3ch -1.0

######################################

# perform 5 iterations of #

# the Monte Carlo (MC) #

# algorithm in temperature 300 K #

######################################

temperature 300.0

niterations 5

######################################

# during MC move one ion by 1A #

######################################

ionsDelta 1.0

#######################################

# Set the distance between atoms #

# of the molecule and the closest ion #

# larger than 1.76A and the minimal #

# distance between ions as 1.76A #

#######################################

extraVAtom 1.76

extraVIons 1.76

######################################

# write statistics from MC to #

# a file states.txt #

######################################

outputStatistics states.txt
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######################################

# write density of ions after MC #

# to files density_NA.dx #

# and density_MG.dx density_CL.dx #

######################################

iondensity density_

########################################

# write accepted positions of #

# ions to states.pqr file in the PQR #

# format in all iterations of MC #

########################################

outputStatesPQR states.pqr

outputStates_freq 1

######################################

# Set the dielectric constant of #

# the solvent to 80 and of the #

# molecule and ions to 4 #

# Set the width of the intermediate #

# regions to 0.5A #

######################################

solventEps 80.0

moleculeEps 4.0

wA 2.0

wI 1.2

######################################

# To generate a pseudorandom #

# number by the user #

######################################

seed 123

######################################

# How long do I have #

# to wait for the results? #

######################################

timing yes
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2.9 File formats

Here we list the formats used in the ION software to represent the data. The first format is PQR
which is described at http://apbs.wustl.edu/MediaWiki/index.php/PQR format. The file in this for-
mat is used to describe the input molecule as well as output coordinates of the free ions from the MC
simulation. The PQR file contains information about atoms, residues, coordinates, atomic radii and
charges.
The second format is the XYZ format which contains the output coordinates of free ions from the MC
simulation.
Average ion distributions can be written in the DX Data file format (DX)
(http://www.cs.wpi.edu/research/DataExplorer/tutorial/data.html#dx). The name of the file includ-
ing the statistics of the Monte-Carlo algorithm is specified as the value of the outputStatistics

keyword. Every row of this file contains the configuration number, the number of the MC steps when
this configuration has not changed and the energy of this configuration.

3 Theory and Methods

In this section we briefly describe the methods which are implemented in the ION software.

3.1 Preliminary steps

First, the center of a molecule is located in the center of the box Ω. For this purpose the center of the
molecule is defined as (xmin+xmax

2
, ymin+ymax

2
, zmin+zmax

2
) where

xmin = min
i
{x : x = xi −Ri} xmax = max

i
{x : x = xi +Ri}

ymin = min
i
{y : y = yi −Ri} ymax = max

i
{y : y = yi +Ri}

zmin = min
i
{z : z = zi −Ri} zmaz = max

i
{z : z = zi +Ri},

i numbers the atoms in the input PQR file (including the atoms of the molecule) and ions (if structural
ions are specified in this file), Ri are atomic radii and (xi, yi, zi) are atomic coordinates read from
the PQR file. Note: ionic coordinates which are saved in the PQR and XYZ outputs, as well as data
in the DX files are translated back to the original position of the molecule specified in the PQR input file.

Second, the program checks if the molecule has enough space in the box i.e., if each atom is away
from the box boundaries by more than wA + Ri (where wA is a wA parameter from the input file and
Ri are atomic radii from the PQR file):

min{|ri − r| : r ∈ ∂Ωh} ≥ Ri + w + ∆Ratom (1)

where i numbers the atoms in the molecule, ri are atomic positions, ∂Ωh = ∂Ω ∩ Ω̄h (see 3.2 and
5) and ∆Ratom is the value of the w_deltaR_atom parameter. If any atom is too close to the box
boundary, the program terminates.

Third, ION searches and classifies the ions from the input PQR file with the following procedure:
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• Find all ions in the PQR file whose type is defined in the input file (including the types with
ionkn 0). Other ions which are not listed in the input file by ionk name are treated as atoms
belonging to the molecule.

• Next, for every ion, check the minimal distance between the center of the ion and the center of
any heavy atom in the molecule.

– If this distance is smaller or equal than the value of the distMol parameter then treat this
ion as an atom that belongs to the molecule.

– If this distance is larger than distSolv then the ion is either treated as a free ion or it is
ignored if restartCoords file is provided.

– In any other case the program terminates after printing information about wrong line.

If restartCoords file is not provided then additional free ions defined with the ionk parameter are
randomly distributed in the box Ω. We discretize position of the free ions with a fine resolution, e.g
(Mnx, Mny, Mnz). While distributing the ions in the solvent the ION program ensures that the ions
cannot be closer to each other than specified by extraVIons (eq. 2) and closer to the nearest atom
in the molecule than specified by extraVAtom (eq. 3). Also, the ions must be away from the border of
the box by at least max(wIk +RIk , minDistIonFromBorder). The above conditions can be expressed
as

|ri − rj| ≥ Ri +Rj + δion (2)

where i, j number all ions, r are ion positions, R ion radii, δion is the value of the extraVIons

parameter,

|ri − rj| ≥ Ri +Rj + δatom (3)

where i numbers all ions, j numbers all atoms, r are atomic or ionic positions, R are atomic or ionic
radii, δatom is the value of the extraVAtom parameter. The third condition is

min{|ri − r| : r ∈ ∂Ωh} ≥ max{Ri + wIk + ∆RIk , Rmin} (4)

where i numbers all ions, r are ionic positions, R ionic radii, wIk is the value of the ionkw parameter or
wI if ionkw not provided, ∆RIk is the w_deltaR_ion parameter and Rmin is minDistIonFromBorder.
If restartCoords file is provided the free ions are read from the restart PQR file.

The ION program also calculates the volume of the solvent (Vsolv). First, ION calculates the
volume of the molecule (Vmol). It is done by summing up the grid points which are inside the spheres
centered on atomic coordinates with their radii defined in the input PQR file. For this calculation ION
uses a finer grid with the resolution decreased by a factor of 2 in comparison with the original one.
Then ION calculates the volume of the box (Vbox = l1l2l3) and the volume of the solvent:

Vsolv = Vbox − Vmol

The volume of the solvent is used to calculate the concentration of free ions in the solvent. For the
i-th ion this concentration is defined as

Ck =
nk

VsolvNA

1027 mol

dm3
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where nk is the number of ions of k-th type, and NA is the Avogadro constant (NA = 6.02214179×
1023mol−1).

To visualize the system ION creates two files: epsilonmol.dx and box.dx. The first file contains
the values of the dielectric constant in every point of the box corresponding to the molecule and the
second file contains the borders of the Ω.

3.2 Poisson equation

We consider the Poisson problem for the Dirichlet boundary condition:

−∇(ε(r)∇Ψ(r)) = 4πρ(r), for r ∈ Ω

Ψ(r) = F (r), for r ∈ ∂Ω

where:
Ω = [0, l1]× [0, l2]× [0, l3] defines a region where we search for the solution;
Ψ(r) - is the electrostatic potential;
ε(r) - is the function of the dielectric constant;
ρ(r) - is the charge density in Ω considering the distribution of atoms in the molecule and ions in the
solvent:

ρ(r) =
∑
i

qiδ(r− ri)

where i number both the atoms and ions in the system, ri is the position of the i-th atom or ion, qi is
the charge and δ(r) is the Dirac delta function.
F (r) defines a boundary condition defined as

F (r) =
1

4πεs

∑
i

qi
|r− ri|

where i number both the atoms and ions in the system, ri is the position of the i-th atom or ion, qi is
the charge and εs defines the dielectric constant in the solvent.
We define the function of the dielectric constant ε(r) as

ε(r) = εm + (εs − εm)
∏
i

Hi(|r− ri|, Ri + ∆Ri, wi)

where

Hi(r, Ri + ∆Ri, wi) =


0 r ≤ Ri + ∆R
3( r−Ri−∆Ri

wi
)2 − 2( r−Ri−∆Ri

wi
)3 Ri + ∆Ri < r < Ri + ∆R + wi

1 r ≥ Ri + ∆Ri + wi

and εm and εs are the values of the dielectric constant inside the molecule (the moleculeEps parameter)
and in the solvent (the solventEps parameter), respectively, ri is the position of the center of the
i-th particle, Ri is the radius of the particle, w is the width of the interface between the areas with
different dielectric constants (the w parameter), ∆R is the displacement of the interface (equal to the
value of the w deltaR ion parameter for free ions and w deltaR atom for atoms in the molecule),
and i numbers all atoms and ions. Fig. 1 shows a chart of the dielectric constant function in one
dimension for one particle.
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Figure 1: Plot of the dielectric constant function in one dimension for the i-th particle.

3.3 Discretization – the Finite Difference Method

In order to solve the Poisson equation 3.2 we use the finite difference method. The discretization of
the grid is

Ω̄h = {(i1h1, i2h2, i3h3), ip = 0, 1, . . . , Np + 1, (Np + 1)hp = lp, p = 1, 2, 3}. (5)

where we define h = max{h1, h2, h3} as the discretization step. l1, l2, l3 corespond to the parameters
lx, ly and lz and N1 + 1, N2 + 1, N3 + 1 to directionx, directiony and directionz

If ui,j,k = u(ih1, jh2, kh3) is the value of the u function at the (ih1, jh2, kh3) point we can define the
forward differences

∂1ui,j,k = (ui+1,j,k − ui,j,k)/h1

∂2ui,j,k = (ui,j+1,k − ui,j,k)/h2

∂3ui,j,k = (ui,j,k+1 − ui,j,k)/h3
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and backward differences

∂̄1ui,j,k = (ui,j,k − ui−1,j,k)/h1

∂̄2ui,j,k = (ui,j,k − ui,j−1,k)/h2

∂̄3ui,j,k = (ui,j,k − ui,j,k−1)/h3

The positions of particle centers do not necessarily correspond to the positions of the grid points so we
distribute each particle charge to at most eight nearest grid points with the following weight formula:
(1 − x̃1

h1
)(1 − x̃2

h2
)(1 − x̃3

h3
), where x̃i is the distance form the grid point to the center of the particle

along the i-th coordinate.
We define the charge density at the (ih1, jh2, kh3) position as

ρi,j,k =
Qi,j,k

h1h2h3

(6)

where Qi,j,k is the value of the charge on the grid point.
Then we can represent the Poisson equation at (ih1, jh2, kh3) as

−
(
∂1(εi− 1

2
,j,k∂̄1Ψi,j,k) + ∂2(εi,j− 1

2
,k∂̄2Ψi,j,k) + ∂3(εi,j,k− 1

2
∂̄3Ψi,j,k)

)
= 4πρi,j,k (7)

When we substitute the forward and backward differences, and define

E+
1 =

1

h2
1

εi+ 1
2
,j,k, E

+
2 =

1

h2
2

εi,j+ 1
2
,k, E

+
3 =

1

h2
3

εi,j,k+ 1
2

(8)

E−
1 =

1

h2
1

εi− 1
2
,j,k, E

−
2 =

1

h2
2

εi,j− 1
2
,k, E

−
3 =

1

h2
3

εi,j,k− 1
2

(9)

E = E+
1 + E−

1 + E+
2 + E−

2 + E+
3 + E−

3 (10)

we obtain a linear system of equations

−E+
1 Ψi+1,j,k − E+

2 Ψi,j+1,k − E+
3 Ψi,j,k+1 + EΨi,j,k+

−E−
1 Ψi−1,j,k − E−

2 Ψi,j−1,k − E−
3 Ψi,j,k−1 = 4πρi,j,k

for (ih1, jh2, kh3) ∈ Ωh and
(11)

Ψi,j,k = Fi,j,k for (ih1, jh2, kh3) ∈ Γh (12)

This system of equations can be written in the matrix form.

Auh = fh (13)

where A is the matrix of the coefficients defined in eq. (8 - 10), uh is the solution vector at points
inside Ω

uh = [Ψ1,1,1,Ψ2,1,1, . . . ,ΨN1,1,1,Ψ1,2,1,Ψ2,2,1, . . . ,ΨN1,N2,N3 ]
T
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and fh is the vector of the right hand side of the Poisson equation considering the border values

fh =



4πρ1,1,1 − E−
1 F0,1,1 − E−

2 F1,0,1 − E−
3 F1,1,0

4πρ2,1,1 − E−
2 F2,0,1 − E−

3 F2,1,0

4πρ3,1,1 − E−
2 F3,0,1 − E−

3 F3,1,0
...
4πρN1−1,1,1 − E−

2 FN1−1,0,1 − E−
3 FN1−1,1,0

4πρN1,1,1 − E+
1 FN1+1,1,1 − E−

2 FN1,0,1 − E−
3 FN1,1,0

4πρ1,2,1 − E−
1 F0,2,1 − E−

3 F1,2,0

4πρ2,2,1 − E−
3 F2,2,0

4πρ3,2,1 − E−
3 F3,2,0

...
4πρN1−1,2,1 − E−

3 FN1−1,1,0

4πρN1,2,1 − E+
1 FNx,2,1 − E−

3 FN1,2,0
...
4πρN1,N2,1 − E+

1 FN1+1,N2,1 − E+
2 FN1,N2+1,1 − E−

3 FN1,N2,0

4πρ1,1,2 − E−
1 F0,1,2 − E−

2 F1,0,2
...
4πρN1,N2,N3 − E+

1 FN1+1,N2,N3 − E+
2 FN1,N2+1,N3 − E+

3 FN1,N2,N3+1


3.4 Solving the discretized Poisson equation

Due to the properties of the discretization scheme, the A matrix in eq. 13 is symmetric and positive
defined. The size of this matrix can be very large but the matrix is sparse. This is the reason why
the preconditioned conjugate gradient (PCG) method is used to solve the eq. 13. As a preconditioner
the Block Jacobi Method is used with incomplete Cholesky factorization at every block. The number
of blocks is equal to the number of processors used by the program. The iterative PCG method is
terminated when

||M−1Auh −M−1fh||2 < η||M−1fh||2 (14)

where M is the preconditioner matrix and η is the parameter that can be tuned in the control file with
a keyword rtol, and || · ||2 denotes the Euclidean norm.

3.5 Monte Carlo Method

The solution of the Poisson equation is used to calculate the electrostatic energy of the system

E =
ke
2

∑
i,j,k

Ψi,j,kQi,j,k − EM
self −

∑
I

EI
self ,

where ke = 1/(4πε0) ≈ 1389.35 Åe−2kJ/mol. The first term on the right side of the above expres-
sion is the electrostatic energy of the entire system, EM

self represents the self-energy of macromolecule
charges due to the discretization of the electrostatic potential on the grid, and EI

self is the electrostatic
energy of a single I-th ion in pure water. Next, the electrostatic energy of the system is used in the
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Monte Carlo algorithm in the following procedure:

• We choose a random ion of the solvent and move it in a random direction for a random distance
(maximal ionsDelta interval). After that its position is bound to subdivision.

• If the chosen ion is too close to the molecule (eq. 3), another ion (eq. 2) or the border of the
box, the ion is moved back to its previous position and we go back to the previous step.

• Otherwise, we calculate the electrostatic energy (Enew) for the new state.

– if Enew is lower than the energy of the previous accepted state (Eold), then we accept this
state

– otherwise we draw a number rnd from the interval [0, 1] and check the condition

e−(Enew−Eold)/kBT > rnd

where T is the temperature (the temperature parameter) and kB is the Boltzman con-
stant. If the condition is satisfied, we accept this state.

– If the movement of the ion is not accepted, the ion is moved back to the previous position
and the old state is accounted for in the statistical ensemble for the second time.

The number of iterations of the MC algorithm depends on the niterations parameter.
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